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Abstract

The semiconductor industry roadmap projects that
advances in VLSI technology will permit more than
one billion transistors on a chip by the year 2010.
The MIT Raw microprocessor is a proposed architec-
ture that strives to exploit these chip-level resources
by implementing thousands of tiles, each comprising
a processing element and a small amount of memory,
coupled by a static two-dimensional interconnect. A
compiler partitions �ne-grain instruction-level paral-
lelism across the tiles and statically schedules inter-tile
communication over the interconnect. Because Raw
microprocessors fully expose their internal hardware
structure to the software, they can be viewed as a gi-
gantic FPGA with coarse-grained tiles, in which soft-
ware orchestrates communication over static intercon-
nections.

One open challenge in Raw architectures is to de-
termine their optimal grain size and balance. The
grain size is the area of each tile, and the balance is
the proportion of area in each tile devoted to mem-
ory, processing, communication, and I/O. If the total
chip area is �xed, more area devoted to processing will
result in a higher processing power per node, but will
lead to a fewer number of tiles.

This paper presents an analytical framework using
which designers can reason about the design space of
Raw microprocessors. Based on an architectural model
and a VLSI cost analysis, the framework computes the
performance of applications, and uses an optimization
process to identify designs that will execute these ap-
plications most cost-e�ectively.

Although the optimal machine con�gurations ob-
tained vary for di�erent applications, problem sizes
and budgets, the general trends for various applica-
tions are similar. Accordingly, for the applications
studied, assuming an 1 billion logic transistor equiv-
alent area, we recommend building a Raw chip with

approximately 1000 tiles, 30 words/cycle global I/O,
20Kbytes of local memory per node, 3-4 words/cycle
local communication bandwidth, and single-issue pro-
cessors. This con�guration will give performance near
the global optimum for most applications.

1 Introduction

Advances in semiconductor technology have made
possible the integration of multiple functional units,
large cache memories, recon�gurable logic arrays and
peripheral functions into single-chip microprocessors.
Unfortunately, increases in the performance of con-
temporary microprocessors have come at the cost of
increasing ine�ciencies in silicon area usage. The in-
e�ciencies arise from the complexity of designs that
use hardware support to exploit more instruction level
parallelism.

Maintaining a rapid increase in microprocessor per-
formance will require a cost e�cient utilization of sili-
con area. The MIT Raw microprocessor is a proposed
architecture that exposes its internal hardware struc-
ture to the compiler, so that the compiler can deter-
mine and orchestrate the best mapping of an appli-
cation to the hardware. A Raw microprocessor [1] is
reminiscent of a coarse-grained FPGA and comprises
a replicated set of tiles coupled together by a set of
compiler orchestrated, pipelined, switches (Figure 1).
Each tile contains a simple RISC-like processing core
and an SRAM memory for instructions and data. In-
struction memory allows the multiplexing of the com-
pute logic on a cycle by cycle basis. SRAM mem-
ory distributed across the tiles eliminates the memory
bandwidth bottleneck, provides low latency to each
memory module, and prevents o�-chip I/O latency
from limiting e�ective computational throughput.

The tiles are interconnected by a high-speed 2D



mesh network, allowing inter-tile communications to
occur with register-like latencies. The switches them-
selves contain some amount of SRAM so that the com-
piler can load into the switch a program that multi-
plexes the interconnect in a cycle by cycle fashion, just
as in a virtual-wires based multi-FPGA system [4].

A typical Raw system includes a Raw microproces-
sor coupled with o�-chip RDRAM (RamBus DRAM)
through multiple high bandwidth paths. The two level
memory hierarchy, namely, a local SRAM memory at-
tached to each tile inside the Raw chip, and a large
external RDRAM memory, is necessary to be able to
solve large problems that exceed the size of the on-chip
memory.

Raw architectures achieve the performance of
FPGA-based custom computing engines by exploit-
ing �ne-grained parallelism and fast static communi-
cation, and by exposing the low-level hardware details
to facilitate compiler orchestration. Unlike FPGA sys-
tems, however, Raw machines support instruction se-
quencing and are more 
exible because the execution
of a new operation can be accomplished merely by
pointing to a new instruction. Compilation in Raw
is faster than in FPGA systems because it binds into
hardware commonly used compute mechanisms such
as ALUs and memory paths, thereby eliminating re-
peated low-level compilations of these macro units.
Binding of common mechanisms into hardware also
yields better execution speed, lower area, and better
power e�ciency than FPGA systems.

The designer of an FPGA device or a Raw micro-
processor is faced with the challenge of determining
the best division of VLSI resources among comput-
ing, memory, and communication. This challenge is
termed the balance problem. Furthermore the design-
ers of both an FPGA and a Raw device must address
the grain size issue { in other words, whether to im-
plement a few powerful tiles, or whether to use many
small tiles each with a lower performance.

This paper presents an analytical framework with
which designers can reason about the division of re-
sources in a VLSI chip. Although our analysis in
this paper is focussed on the Raw microprocessor, the
analysis generalizes to other architectures. Our ob-
jective in this paper is to gain more insight into cost-
performance optimal designs given a �xed amount of
resources.

The framework presented in this paper focuses on
the performance requirements of applications, intro-
duces an architecture model, a cost model and a per-
formance model for applications, and de�nes an op-
timization process to search for performance optimal

designs given a cost constraint.

The architecture model de�nes an architecture
based on parameters that include the number of tiles
P , the processing power of each tile p, the amount of
memory in each tile m, and the communication band-
width out of each tile c. The cost model estimates
the cost in terms of chip area of realizing the given
architecture with the speci�ed set of parameters. The
performance model estimates the runtime of each ap-
plication as a function of the problem size. Perfor-
mance estimation is based on both (1) a characteriza-
tion of the application and its algorithms in terms of
its requirements including processing steps, memory
and communication volumes, and (2) the architecture
model.

Together with a cost constraint de�ned in terms
of the cost model, our performance model allows us
to perform a constrained optimization on the inde-
pendent architectural variables. We can, for example,
compute the points or contours in the architectural
space that correspond to the best performance for a
given cost, lowest cost for a given level of performance,
or best e�ciency de�ned by performance/cost.

The algorithms used in this study have been
adapted to the Raw system architecture illustrated in
Figure 1 by �rst partitioning them into subproblems
that can �t within the Raw chip. Each subproblem
is loaded from the external global RDRAM memory
into the set of local memories in the tiles. Compu-
tation occurs on the subproblem, and the results are
stored back into external RDRAM. All the subprob-
lems are visited (possibly multiple times) in sequence.
The algorithmic slowdown due to blocking the prob-
lem in this manner is accurately modeled. Each sub-
problem is solved in parallel with a blocking algorithm.
Applications studied in this paper include Jacobi Re-
laxation, Dense Matrix Multiply, Nbody, FFT, and
Largest Common Subsequence.

The speci�c contribution of this paper include:

� A general framework for reasoning about the de-
sign space of VLSI-based parallel architectures in-
cluding models for cost and performance.

� Insights on optimal grain size and balance in Raw
microprocessors.

The remainder of this paper is organized as follows.
Section 2 describes the three models developed in this
paper: the performance model, the cost model and the
application model and gives a qualitative analysis of
cost and performance. Section 2.7 formulates the op-
timization process based on previous model assump-
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Figure 1: Raw system composition. A typical Raw system includes a Raw microprocessor coupled with o�-chip
DRAM and stream IO devices. Each Raw tile contains a simple RISC-like processor, an SRAM memory for
instructions and data, and a switch. The tiles are interconnected in a 2D mesh network that is orchestrated by
the compiler. The switches themselves contain some amount of SRAM so that the compiler can load into the
switch a program that multiplexes the interconnect in a cycle by cycle fashion, just as in a virtual-wires based
multi-FPGA system.

tions, and Section 3 gives our experimental results.
Section 4 concludes the paper.

2 Framework

This section presents the analytical framework used
in analyzing candidate designs in terms of their grain
size and balance. We �rst start with a motivation for
a study of grain size issues.

2.1 Motivation

Two key questions in the design of a Raw micro-
processor involve the grain size of its tiles and their
balance. The grain size re
ects the sizes of various
components inside the tiles such as memory, process-
ing, and communication. A very coarse grain design
would involve multiple-issue superscalars for process-
ing and large local memories. Very �ne grain designs
would be similar to contemporary FPGAs and include
a few bits worth of logic and memory within each tile,
and a few wires connecting the individual tiles. De-
signs with a moderate grain size would involve very
simple single-issue processors in each node.

Grain size and balance play a large part in deter-
mining the e�ciency or performance per unit cost of

a machine assuming a �xed total budget. If an engi-
neer builds a small number of very large (coarse grain)
nodes, a point of diminishing returns is reached where
node performance increases very slowly (if at all) as
node size is increased. On the other hand, building
a large number of very small (�ne grain) nodes will
also result in diminishing returns as the communica-
tion costs dominate. The highest e�ciency occurs at
an optimal point between the two extremes. Simi-
larly, as observed by Kung and others [11, 5], there is
an optimal balance of resources between the proces-
sor, memory, and communication components within
a node.

While there has been much debate on this topic,
few concrete results have been reported. Machine bal-
ance and grain size continues to be determined more
by convenience and market forces than by engineer-
ing analysis. Our primary motivation in undertaking
this study is to provide an analytical framework to en-
able engineers to obtain insights into the tradeo�s in
choosing various machine parameters.

Let us �rst provide an overview of the framework.
Table 1 summarizes our notation organized by model
category. Throughout the paper, execution times are
measured in machine cycles, information in units of
machine words, and cost in SRAM bit equivalents
(Sbe). As discussed in Section2.4, an Sbe is the area



ARCHITECTURE MODEL
P number of tiles in Raw
p processing power of each tile
m amount of SRAM in a tile
c local communication bandwidth
l single hop interconnect latency of a word
o software overhead for communication
kd average network distance traversed by messages
lg DRAM latency for global communication
bg global communication bandwidth or DRAM accessing bandwidth
x machine con�guration: x =< P; p;m; c; l; o; kd; lg ; bg >

COST MODEL
Kp(p) processor cost per tile
Km(m) memory cost per tile
Kc(c) local communication router cost per tile
Klg(lg) global latency cost for entire Raw system
Kbg(bg) global bandwidth cost for entire Raw system
K(x) total cost of Raw system

APPLICATION MODEL
N problem size
N 0 subproblem size: part of the original problem requiring one global step

Rp(P;N;N 0) total amount of computation required per tile to solve the problem
Rm(P;N;N 0) total amount of local memory required per tile
Ra
m(P;N;N 0) total amount of local memory per tile required to hold a subproblem

Rl
m(P;N;N 0) total amount of bu�er per tile for overlapping local communication

Rm(P;N;N 0) total amount of bu�er per tile for overlapping global communication
Rc(P;N;N 0) total amount of data required to be sent or received in-between tiles
Ro(P;N;N 0) software overhead attached to local communication events
Rbg(P;N;N

0) total amount of global communication required per chip
Rlg(P;N;N

0) total amount of overhead and latency required for global communication

PERFORMANCE FUNCTIONS
Ts(N;p) sequential run-time of application

T (N;N 0; x) parallel run-time of application
Tp(N;N 0; x) computation time per node including overheads
Tc(N;N 0; x) local communication time per node
Tg(N;N 0; x) global communication time per node
Tai(N;N 0; x) amount of overhead per tile resulting from algorithmic load imbalance

Table 1: Overview of model parameters and functions.

occupied by one bit of SRAM memory.

2.2 Overview of the Framework

Let us overview our analytical framework illus-
trated in Figure 2 by considering a simple machine
model. In its simplest form, a parallel machine can be
characterized by the number of tiles or nodes P , the
processing power of each node p (operations per cy-
cle), communication bandwidth of each node c (words
per cycle), and the amount of local memory per node
m (words).

For a given problem size and partitioning strategy,
an application can be described by its processing, com-
munication and memory requirements, or Rp (opera-
tions to be performed), Rc (words to be communi-
cated) and Rm (words).

The performance of the application in terms of its

runtime T is derived from the application require-
ments and the architectural model. If the processing
time Tp =

Rp

p
and the communication time Tc =

Rc

c
,

then if processing and communication is fully over-
lapped, the runtime is given by T = max(Tp; Tc).

We use cost models Kp(p), Kc(c), Km(m) to map
the machine parameters P; p; c;m into costs. In other
words the processor cost model Kp(p) provides the
area cost of implementing a processor that can per-
form p operations per cycle. The total machine cost
for a P processor machine is then K = P (Kp +Kc +
Km).

Given an application with a �xed problem size N
and an area budget B, a constrained optimization
problem is de�ned with the objective of �nding the
optimal machine con�guration that gives the smallest
runtime for that budget. In other words the frame-
work �nds the set of architectural parameters P; p; c;m
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Figure 2: Analytical framework. The key components
of the framework are the models and the optimiza-
tion process. Given an application with an associated
problem size and a �xed budget, the constraint equa-
tions are derived for the optimization. The nonlinear
optimization process searches the machine con�gura-
tion space that gives the minimal runtime for the ap-
plication.

that yield a minimum value for T , given that the cost
K cannot exceed the available budget B. Or more
formally,

�nd P; p; c;m
to minimize T = max(Tp; Tc),
subject to B � K.
As discussed in more detail later, the optimization

process is sped up by a set of balance constraints. The
balance constraints state that for the optimal solution
the computation time and communication time must
be equal, and that the physical memory should �t the
problem. The balance constraints greatly reduce the
size of the search space, and thus the complexity of
the optimization procedure.

The following sections discuss each of the compo-
nents of the framework and the optimization process
in more detail.

2.3 Architecture model

This section discusses parameters necessary for
architecture characterization. Although several ap-
proaches to modeling the performance of a parallel
computer have been proposed in the literature [2, 3],
none are completely suited to modeling �ne-grain par-
allel systems built on a chip. Figure 3 shows our char-
acterization of a Raw system using the parameters de-
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Figure 3: A four node illustrative Raw system char-
acterized by the parameters < P; p;m; c; l; o; bg; lg >
where the processing power per node in operations
per cycle is p, the amount of SRAM memory per node
is m, the local communication bandwidth per node in
words per cycle is c, the software overhead for a com-
munication event in cycles is o, the single hop commu-
nication latency is l, the global o�-chip communication
bandwidth per Raw chip in words per cycle is bg, the
RDRAM latency expressed in cycles is lg .

scribed below. Our machine characterization di�ers
from previous ones in the sense that it captures both
local and global communication performance, and in-
cludes software overheads.

We choose as independent parameters the number
of nodes, P , the processing power per node in opera-
tions per cycle, p, the memory per node m in words,
the local communication bandwidth per node in words
per cycle, c, the software overhead for communication
in cycles, o, the single hop latency of the network, l,
the global o�-chip communication bandwidth per chip
in words per cycle , bg, and the RDRAM latency ex-
pressed in cycles, lg .

As an example, sending a local inter-tile message
of length L words �rst involves spending o cycles in
launching the message. The message header word
travels on average a distance of kd hops in the net-
work, using l cycles per hop. Because the bandwidth
out of a node is c words per cycle, subsequent mes-
sage words take 1

c
to enter the network. The receiving

tile would also spend o cycles receiving the message.
Thus, the communication time per message is

Tc = 2o+ kdl + (L� 1)
1

c
(1)

Writing a block of data to the o�-chip RDRAM



memory �rst involves an overhead o associated with
starting up global communication. The latency of ac-
cessing the DRAM will be the sum of the latency of
traversing the interconnection network in one dimen-
sion (kdl=2) plus lg the DRAM latency. (We divide
by two to indicate that RDRAM memory messages
do not have to traverse both the X and Y network di-
mensions) The transfer rate of subsequent words will
be the minimum of the local communication band-
width and the global communication bandwidth per
tile (since multiple tiles might be writing external
memory). Thus the time for a writing a block of size
L to memory is,

Tg = o+
kd
2
l + lg + (L� 1)max

�
1

c
;
P

bg

�
(2)

Communication locality can be captured at the ap-
plication level by accounting for it in the average dis-
tance that messages travel (kd). We ignore contention
e�ects (e.g. resource and network contention) also be-
cause we assume that the compiler can statically or-
chestrate communication events much as in a virtual-
wires system. We also use a conservative approach in
de�ning applications' communication requirements.

2.4 Cost model

We use silicon area as a measure of cost. Silicon
area re
ects the fundamental cost of building a com-
ponent and is a good basis for comparing alternatives
as opposed to market price which includes many arti�-
cial factors. The cost model is based on CMOS micro-
processors, SRAM and DRAM memories, and a mesh
interconnection technology. For simplicity we consider
the o�-chip RDRAM memory free. Although our as-
sumptions may change speci�c numerical results, the
methodology for determining balance and grain size
remains the same.

We normalize cost to units of SRAM bits, viz. one
bit of SRAM takes one unit of area and therefore one
unit of cost. We express the cost of all other compo-
nents in terms of SRAM bit equivalents (Sbe).

We use the notion of relative density to enable the
normalization of logic, memory and communication
areas into units of SRAM bit equivalents. Relative
density captures the area impact of wires and more ir-
regular structures such as logic areas versus the more
regular memory arrays. Although an SRAM bit com-
prises typically 4 to 6 transistors we observe that the
area it occupies is similar to the area of a logic transis-
tor in a CPU die because of its regular structure and
therefore its higher relative density. Thus, the chip

size expressed in Sbe units is equivalent to the total
number of transistors for logic areas.

Area Relative density

CPU logic transistor 1 Sbe
Router logic transistor 1 Sbe

SRAM bit 1 Sbe
DRAM bit 1/16 Sbe

Table 2: Relative densities of constituent VLSI com-
ponents.

A DRAM bit is realized with one transistor and
the area it occupies is 10-16 times smaller than an
SRAM bit area. We arrived at this conclusion as the
typical SRAM cell requires a wire grid of dimension
3� 4 compared to a DRAM cell implemented on the
intersection of two wires. Factors such as the number
of metallic layers may change the relative density rela-
tions as more layers increase the density of logic areas.
The logic area density is also reduced because of the
greater amount of area devoted to wiring.

The following cost functions are based on empirical
observations and statistics gathered on current imple-
mentations of superscalars and router chips.
Processor cost Kp The processor cost model com-
putes the area cost as a function of p. We �nd it
convenient to relate p to cost kp using an intermedi-
ate parameter i, which is the number of issue units i
in the processor. Thus, i = 4 implies a 4-Way super-
scalar with a maximum of 4 operations per cycle.

We model the relationship between processing cost
and instruction issue structure as a quadratic curve,
which captures the cost increase due to multiple issue
superscalars.

Kp(i) = Bp +Kps(i� 1)2 (3)

In the above, a cost of Bp is required to achieve a
single issue processor with i = 1.

We relate processing power p and the number of
issue units i using:

p =
p
i (4)

This model captures the relationship between per-
formance and cost due to more aggressive clock rates
of lower issue processors. Typically single issue designs
obtain 1.6-2 times faster clock rates than correspond-
ing high-issue rate processors. It also captures the
fact that it is easier to obtain performance close to the
theoretical maximum cycles per instruction in lower-
issue processors as they require a smaller amount of
instruction-level parallelism in applications.



Studying the layout of some simple RISC processors
[6, 14, 13, 8] leads to a base cost of Bp = 2:5 � 105

transistor. That is, a minimal single issue 64 bit pro-
cessor can be built in the area of 250K SRAM bits
or with 250K logic transistors. A cost constant of
Kps = 4 � 105 Sbe, was arrived at from the study of
some high-end processors [22, 20, 21, 8].

For validation, Figure 4 compares the number of
transistors dedicated to logic in several superscalar
microprocessors with our cost model for Kp(i). We
observe that for higher-issue superscalars the varia-
tion in the number of transistors dedicated to logic
areas is large. This variation is caused by important
di�erences in implementation of components like issue
structure, scheduling and memory interfaces. A more
detailed cost model for superscalars may also deal with
the cost impact of dynamic or static issue structures,
scheduling and memory interfacing.
Memory cost. We approximate memory cost as a
linear function of capacity m.

Km(m) = Bm +Wm (5)

Here, m is the memory size in words, Kms is the cost
per word of memory, and Bm is the �xed overhead
cost of the memory. This overhead includes logic for
translation, address decode, data multiplexing, and
memory peripheral circuitry. For our calculations, we
assume that W (wordsize) = 64, and the overhead,
Bm, is 5� 104.

Communication cost. Main components of a typ-
ical router comprise a routing module, a crossbar ar-
biter, and input output modules often including large
FIFOs. We observe that most of the area in current
router chips are taken up by FIFOs and pad frames
(c.a. 20%). The amount of FIFOs depends on such
factors as the number of virtual channels. The area of
queues re
ects size of message 
its and a length which
is typically 16-20 
its. A 
it is the number of bits
transferred in one cycle, and therefore it also equals
c expressed in bits. One word per cycle communica-
tion bandwidth thus requires a 
it size of one word.
Although not necessary, we also assume the 
itsize is
equal to the physical channel width. We denote the
dimension of the network as n. The total number of
bidirectional channels is then 2n. Our results focus on
two-dimensional networks, so n = 2 for most of this
paper. Logic areas such as the crossbar usually occu-
pies a small part of the total area. The cost function
for the routers is described in the following equation:

Kc(c) = Bc+KcsW �FIFOl�2n�SetofQ�c: (6)
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Figure 4: Comparison between the processor cost
function Kp(i) and cost of logic areas in current su-
perscalar microprocessors. Cache memory areas are
factored out.

In the equation above, FIFOl is the length of the
FIFOs and SetofQ is the number of queue sets due
to virtual channels. Our results use SetofQ = 1. The
communication cost factor, Kcs, is derived by �tting
the cost function equation with the areas of routing
chips shown in Table 3.

For our calculations, we useKcs = 25. For example,
a router with a 64 bit 
it size and with one set of
queues, each with length 16 
its, takes approximately
125000 logic transistor area in our model.

The base area for a router, Bc is estimated at
2:5 � 104. We arrive at this from a study of sim-
ple routers [10, 9, 6, 15]. Examples of routers with
the number of transistors used in current implementa-
tions are shown in Table 3. The The estimates using
our communication cost model are also shown. The
comparison indicates that our cost model re
ects rel-
atively accurately the area occupied by these routers
except the RDT [7] router chip that has more than half
of its area devoted to a multicast mechanism module
and a bit-map generator.

Global communication cost. We approximate
global communication cost as a linear function of
global o�-chip communication capacity. The base area
for global I/O, Bbg = 104, is estimated to be some-
what smaller than a simple router area as no routing
functions are necessary. The global communication
bandwidth is limited by the maximum number of pins
a packaging technology will allow. As current micro-
processor packaging technologies use from one hun-



Router Transistors Estimated Type Network Flits FIFOl SetofQ Pins

J machine 29000 29050 wormhole 3D mesh 9 3 1 -
Postech 30140 31400 virtual cut-through 2D mesh 8 8 1 100
Mosaic C 60000 44200 wormhole, asynch. 2D mesh 8 4 3 c.a. 88
Chaos 110000 121000 chaotic 2D mesh 16 20 3 132
RDT 320000 111400 wormhole, 2v 3D RDT 18 16 2 299
RR 600000 625000 adaptive, 5v 2D mesh 75 16 5 300

Table 3: Important cost factors for router chips. In the Type column we give the number of virtual channels
where necessary, e.g 2v means 2 virtual channels. The second and third columns compare the actual number and
the estimated number of transistors. With F lits we show the 
it size or the number of bits transferred in one
cycle. FIFOl shows the length of FIFOs in 
its and SetofQ shows the set of queues in the design often re
ecting
the number of virtual channels.

dred to several hundred pins, we assume that in 10-
12 years packaging will allow no more than roughly
2000 pins. The maximum possible global bandwidth
is then bmax = 2000=W . The global communication
cost factor, Kbs = 105 multiplied with the wordsize
is approximately the cost in SRAM bit equivalents of
one word per cycle of global I/O bandwidth.

Kbg(bg) =

� 1 if bg > bmax

Bbg +KbsgWbg otherwise
(7)

Global latency cost. For simplicity we assume this
cost as constant re
ecting the more or less constant
speed of DRAM access over time. Blg is estimated at
105.

Klg(lg) = Blg (8)

Total cost of the system. The total cost of the
system is equal to the sum of its components.

K(x) = P (Kp(p)+Kc(c)+Km(m))+Kbg(bg)+Klg(lg)
(9)

2.5 Application model

The application model contains functions and pa-
rameters that are necessary for application perfor-
mance characterization. To predict the performance
of an application with a particular machine con�gu-
ration, we assume that the resource demands are uni-
form over time and that processing, local and global
communication can be completely overlapped. Some
algorithms, such as those used in dynamic program-
ming, also require the estimation of the algorithmic
imbalance or the idle time due to synchronization over-
head. Applications with several phases can be han-
dled by dividing the application into its phases and
characterizing each phase separately. Our assumption
that processing, local and global communication are

overlapped imposes constraints on how the problem
is partitioned and on the total amount of memory re-
quired. As we will show later, besides the memory
needed to hold the problem, local and global commu-
nication bu�ers are required in order to be able to
overlap communication times.

We will exemplify the concepts of this section by
analyzing the Jacobi relaxation problem. The require-
ments of the other applications considered in this pa-
per are presented in the Appendix. The Jacobi Relax-
ation problem is an iterative algorithm which, given a
set of boundary conditions, �nds discretized solutions
to di�erential equations of the form r2A + B = 0.
Each step of the algorithm replaces the value at each
node of a grid with the average of the values of its
nearest neighbors.

The original Jacobi problem de�ned by a grid of size
N is partitioned in subgrids of size N 0 as illustrated
in Figure 5. Each subgrid or subproblem is solved by
storing the subproblem of size N 0 in the internal mem-
ory of a Raw microprocessor and running a blocking
relaxation algorithm. After a given number of phases,
the subgrid is stored in external RDRAM, and the
next subgrid is loaded. Clearly, a given subgrid has to
be loaded and operated upon multiple times to re
ect
the e�ect of synchronization with the values computed
in neighboring subgrids.

Because, values from neighboring subgrids do not
impact the relaxations on a given subgrid stored in the
microprocessor, the number of iterations needed for
convervence increases. We choose is =

p
N 0=2 as the

number of iterations after which resynchronizations
must occur between subproblems. Starting with some
boundary conditions this means propagating border
values to all points in a subproblem. We chose the
total number of iterations as being it = N2 giving an
error reduction factor of ten.

Let us analyze the requirements of this application.
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The two surfaces correspond to the runtime performance function and a combined equation for the constraint
functions. The intersection of the two surfaces determines the points that give balanced machine con�gurations.
The points (copt; Popt) that correspond to the smallest runtime are the global optimal solutions of the optimization.
Other parameters such as processing power and memory size can be determined from the constraint equations
by substitution.

N

N’

Figure 5: Jacobi Relaxation. The problem of size N
is �rst partitioned in subproblems of size N 0. Each
subproblem is solved with blocking on P processors.
Each processor receives bordering data from its four
neighbors and sends its data along borders to its neigh-
bors. Subproblems are resynchronized after a number
of iterations.

Required processing per node Rp. This require-
ment re
ects the total amount of computation re-
quired per Jacobi node given the algorithmic assump-
tions described above. The total number of operations
for each point are three additions and one multiplica-
tion.

Rp = it4
N

P
= 4

N3

P
: P 2 [1; N ] (10)

Required amount of memory words per node

Rm. The required memory is comprised by the mem-
ory required to solve the subblock of size N 0 and also
the memory bu�ers needed to overlap local and global
communication.

Rm =
N 0

P
+ 4

r
N 0

P
+ 2

N 0

P
= 3

N 0

P
+ 4

r
N 0

P
: (11)

Required number of words of local communi-

cation per node Rc. The required local communi-
cations is the total amount of data sent or received
during the whole execution time. For any iteration
each processor requires the bordering points from its
neighbor processors.

Rc = it � 8

r
N 0

P
� N

N 0
= 8

N3

p
N 0P

(12)



Required local communication events Ro.

These events incur a software penalty for initiating
a communication step. It re
ects the total number of
times a local send or receive is issued.

Ro = Rc � 1q
N 0

P

(13)

Required latency of events Rl. Re
ects the total
number of times a local send is issued.

Rl = Rc � 1

2
q

N 0

P

(14)

Required global communication Rbg. Re
ects the
total amount of words of global communication per
chip.

Rbg =
it
is
2N = 4

N3

p
N 0

(15)

Required global communication events Rlg. Re-

ects the total times global sends or reads are initiated
per chip.

Rlg =
Rbg

N 0
(16)

2.6 Performance Functions

The performance functions estimate the running
time of an application in terms of application require-
ments and architecture parameters.

Runtimes < T; Tp; Tc; Tg >. Let the times for pro-
cessing, local communication, and global communica-
tion be Tp; Tc; and Tg respectively. Under the assump-
tions that local and global communication time are
overlapped with computation, the parallel runtime is
de�ned as the maximum of these times.

T = max(Tp; Tc; Tg)

Tp =
Rp

p
+Roo+Rlgo

Tc =
Rc

c
+Rlkdl

Tg =
Rbg

bg
+Rlg

kd
2
l +Rlglg (17)

As an example, if the number of operations that
must be performed is Rp and the processing power is
p operations per cycle, then the processing time is sim-
ply Rp=p. Similarly, if the number of events incurring
the message overhead (o cycles) is Ro, then the time
wasted in message overhead activity is Roo.

2.7 The optimization problem

In this section we describe in more detail the opti-
mization procedure. The optimization procedure is
also illustrated graphically in Figure 6.

The problem solved is the following constrained based
nonlinear optimization problem:

Given: a �xed chip area or budget B and a problem
size N

Objective:

min (T (N;N 0; x)) (18)

subject to the constraints given below, where x is
a speci�c
machine con�guration < p; P;m; c; o; l; bg; lg >. The
solution of this optimization is the optimal machine
con�guration: xopt =< p; P;m; c; o; l; bg; lg >opt and
and the optimal subproblem size: N 0

opt

Constraints:

1. Budget B must be greater or equal than the
total cost. The total cost of the system is computed
as the sum of its components.

B � P (Kp +Kc +Km) +Kbg +Klg (19)

It is expedient to use an additional set of balance
constraints as given below, when the communication
and computation are overlapped. The balance con-
straints focus the search for the optimal solution to
balanced machine con�gurations. In other words, sec-
ond and third equations state that communication and
computation times should be equal. If they are not
equal, we can take resources from the faster compo-
nent without increasing runtime. The fourth balance
constraint states that the memory should �t the prob-
lem. If the memory is larger than this amount, it can
be reduced without impacting performance. When lo-
cal, global communication times are equal and mem-
ory �ts the problem, the machine con�guration is bal-
anced for the application. In a balanced machine each



resource is utilized to its fullest. The balance con-
straints greatly reduce the search space, and thus the
complexity of the optimization procedure.

2. Balanced local communication with computa-
tion.

Tp = Tc (20)

3. Balanced global communication and computa-
tion.

Tg = Tp (21)

4. Memory on processor element must �t the mem-
ory required for a block. Besides the memory re-
quired for actual computations Ra

m, bu�ers for local
and global communications Rl

m; R
b
m are allocated be-

cause of overlapping conditions.

m = Rm = Ra
m +Rl

m +Rg
m (22)

3 Analysis

In this section, we study a set of applications in
the context of the framework presented. The appli-
cations are: Jacobi Relaxation, Dense Matrix Multi-
ply, Nbody, FFT, Largest Common Subsequence. We
chose these applications becouse they are diverse and
require con
icting machine performances to run ef-
�ciently. The optimization procedure has been im-
plemented in Mathematica. We use a 3 cycle soft-
ware overhead and a 100 cycle DRAM access latency.
We also counted an 8Kbyte SRAM-based instruction
cache per node.

In all the experiments we used a budget of 1 bil-
lion SRAM bit equivalents or the area required for 1
billion logic transistors. This budget is achievable in
10-12 years as projected by the Semiconductor Indus-
try Association (SIA) given a 10-20% growth rate per
year of die areas and a growth rate in transistor counts
of between 60 and 80% per year due to increasing den-
sities.

Application speci�c results. Figure 7 shows the
optimal division of chip resources for the various ap-
plications as a function of problem size. The optimal
amount of each resource is shown in greater detail in
Figures 8 through 12. Table 4 summarizes the optimal
con�gurations and chip sizes.

Perhaps the most important result from Figure 7
is that the amount of area devoted to processing and
local communication is more or less constant at about
75 percent for all the applications and problem sizes.

The global communication bandwidth of 30 words
per cycle is the maximum achievable given a packag-
ing technology allowing 2000 pins. The only applica-
tion that is I/O limited and requires this bandwidth
is FFT. All the other applications have a negligible
area allocated to global communication. The total
chip area for global communication is relatively small
even for FFT. Therefore, providing the maximum pos-
sible global bandwidth is not a bad idea in a �nal con-
�guration.

As we can see, the relative communication area re-
quired is small in applications such as Jacobi and LCS
as they also show good spatial locality. These appli-
cations can use most of the resources for processing.
FFT and Nbody require the largest communication
area with an optimal communication bandwidth be-
tween 4 and 5 words per cycle. The division between
processing and memory areas is uniform.

The matrix multiplication based on Connor's mem-
ory e�cient blocking algorithm gives the most uni-
formly divided con�guration. For this application,
memory, local communication and processing areas
are approximately equal.

The amount of memory per node obtained is rela-
tively small compared to modern day multiprocessors
in all applications. The reason is twofold. First, the
total amount of memory in the entire Raw chip is still
quite large, since it is the product of P and m. Sec-
ond, fast local communication obviates the need for
huge amounts of local memory. The matrix multipli-
cation required the largest amount of memory giving
a total of 24 Kbytes per node. The smallest memory
is required for Nbody.

For all the applications the optimal processing
power obtained is equivalent to a single-issue proces-
sor. The total number of processors P varied between
1100 to 2310 for large problem sizes.

Although the optimal machine con�gurations ob-
tained vary for di�erent applications, problem sizes
and budgets, the general trends for various applica-
tions are similar. Accordingly, for the applications
studied, assuming an 1 billion logic transistor equiv-
alent area, we recommend building a Raw chip with
approximately 1000 tiles, 30 words/cycle global I/O,
20Kbytes of local memory per node, 3-4 words/cycle
local communication bandwidt, and single-issue pro-
cessors. This con�guration will give performance near
the global optimum for most applications.

Sensitivity of grain size. The framework helps an-
swer many other questions about machine con�gura-
tions. Let us study the sensitivity of performance to
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Figure 7: Breakdown of chip areas for processing, memory, local communication and global communication that
give optimal machine con�gurations for a budget of 1 billion logic transistor equivalent area.
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Figure 10: Local SRAM data memory m per node in
optimal machine con�gurations.
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Figure 12: Processing power p in optimal machine con-
�gurations for di�erent problem sizes.

the machine con�guration near the optimum machine
con�guration point. This study is useful to determine
a machine con�guration that is robust across many
applications. As an example, let us determine the ma-
chine con�guration with the smallest number of nodes
whose performance is within 25 percent of the optimal
con�guration.

Results are shown in Table 5. For each applica-
tion, the �rst row gives the optimal con�guration. The
second row gives the con�guration with the smallest
number of nodes under the condition that the perfor-
mance is no worse than 25 percent of the optimal. As
we can see, balanced machine con�gurations with less
nodes usually take advantage of the parallelism avail-
able in superscalar processors. However, for all the
applications studied the con�guration that gave best
performance used nodes based on 2-way superscalars
at most.

Design comparisons. The framework also allows us
to compare competing designs for the same budget.
As an example, let us compare the two designs: (1)
using on-chip SRAM and routers with 16
it FIFOs,
and (2) using only a small SRAM cache and the rest
of memory in on-chip DRAM as well as small 2
it
FIFOs. We derive the performance/cost optimal con-
�gurations and look to application performance for
di�erent problem sizes.

Since DRAM densities are much higher than SRAM
densities we can have more memory per node in alter-
native (2). One problem in using DRAMs is that the
access latency that is much higher than correspond-
ing SRAMs. To reduce the impact of the latency, we
include a small SRAM cache in each node and as-
sume that the SRAM cache results in a near perfect
hit rate. Case (2) also has small FIFOs { With good

static scheduling of the communication channels the
need for deep FIFO's is reduced.

The question is how much do these changes im-
pact the performance of applications given perfor-
mance/cost optimal partitioning of resources in both
cases? Figure 13 shows the performance ratio between
the second and the �rst designs. It is easy to see that
the larger amount of on-chip memory in case (2) re-
sults in signi�cantly higher performance.
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Figure 13: Performance comparison between two cost
optimal designs each with a budget of 1 billion logic
transistor area. In the �rst design we use SRAM and
routers with 16 
its FIFOs, while in the second design
we use on-chip DRAM with a 1Kbyte SRAM cache
per node and 2 
it FIFOs.

4 Conclusions

This paper provides a framework for reasoning
about single chip microprocessors such as Raw with
replicated, �ne-grain processing elements. The frame-
work uses a machine characterization that considers
processing, memory, local and global communication,
and latency as separate machine resources. This is a
unique characterization of machine space since it cap-
tures the e�ects of locality by treating local and global
communication separately. The framework incorpo-
rates a cost model based on empirical observations
and statistics gathered on current implementations of
superscalars and router chips.

The framework recognizes the importance of bal-
ance in good design, and integrates this idea with a
cost and performance model to provide a useful de-
sign tool. Having provided this framework, this paper
chooses a diverse application suite in order to exercise
the framework and to address some general questions



Problem Size P c p m bg PKp PKc PKm Kbg Klg

Matmul 108 1290 2.6 1.25 1640 3.9 35 35 28 0.02 0.01

Matmul 106 1290 2.3 1.25 2230 3.3 35 30 33 0.02 0.01

Matmul 104 724 8 1.5 97 8.8 25 65 9 0.05 0.01

Jacobi 108 2180 0.19 1.25 464 4.4 60 7.4 32.6 0.03 0.01

Jacobi 106 2171 0.19 1.25 502 4.2 60 7.4 32.6 0.03 0.01

Jacobi 104 1950 1 1.25 25 21 53 22 23 0.16 0.01

Nbody 108 1100 5 1 61 0.06 26 60 13 0.0004 0.01

Nbody 106 1080 5 1 67 0.06 26 60 13 0.0004 0.01

Nbody 104 1070 5 1 8 0.5 26 60 13 0.004 0.01

FFT 108 1160 4.2 1.25 178 30 31 50 15 0.2 0.01

FFT 106 1160 4.2 1.25 178 30 31 50 15 0.2 0.01

FFT 104 1160 4.2 1.25 178 30 31 50 15 0.2 0.01

LCS 108 2310 0.01 1.25 337 0.015 63 3.7 32 0.0001 0.01

LCS 106 2330 0.01 1.25 291 0.014 63 3.7 32 0.0001 0.01

LCS 104 2290 0.25 1.5 20 0.25 53 9 27 0.002 0.01

Table 4: Breakdown of resources and optimal machine con�gurations for three problemsizes. Columns P to bg
represent the optimal machine con�guration and the columns from PKp to Klg are the chipsizes in percent of
the total cost.

Problem P N 0 c p m bg PKp PKc PKm Kbg Klg

Matmul 1290 548x548 2.6 1.25 1640 3.9 35 35 28 0.01 0.01
(18%) 826 685x685 1.7 2 3975 2.5 46 20 32 0.01 0.01

Jacobi 2180 302230 0.19 1.25 464 4.4 60 7.4 32.6 0.01 0.01
(24%) 811 302230 0.3 2 538 5 77 5.5 16 0.01 0.01

Nbody 1100 8306 5 1 61 0.06 26 60 13 0.0002 0.01
(21%) 799 295145 5 1.5 2954 0.001 28 47 24 0.00001 0.01

FFT 1160 68718 4.2 1.25 178 30 31 50 15 0.2 0.01
(23%) 356 3518440 2.7 1.75 29594 30 17 10 71 0.2 0.01

LCS 2310 193427 0.01 1.25 337 0.015 63 3.7 32 0.0001 0.01
(23%) 1119 4354 0.05 1.75 499 0.015 73 2.4 23 0.0001 0.01

Table 5: Solutions that come within 25% of the optimal for a problem size of 108 with the smallest number of
nodes P . The �rst row of each application shows the global optimum, and the second row shows the solution with
the minimum number of processors and performance within 25% of the optimal. The numbers in parentheses
show the performance degradation compared to the global optimum for the con�gurations with the minimum
processors. The �rst columns between P to bg represent the optimal machine con�guration and the columns from
PKp to Klg are the chipsizes in percent of the total cost.



in parallel computer design in general. More specif-
ically, it addresses the questions of on-chip resource
division in the MIT Raw microprocessor.

Although the optimal machine con�gurations vary
for di�erent applications, problem sizes and budgets,
the general trends are consistent. The framework rec-
ommended that chip designers devote about 75 per-
cent of the chip area to processing and local com-
munication. The framework further suggested that
for the applications studied and assuming an 1 bil-
lion logic transistor equivalent area, designers should
build a system with about 1000 nodes, 30 words/cycle
of global I/O, 20Kbyte of local memory per node,
3-4 words/cycle local communication bandwidth and
single-issue processors for optimal performance.
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