
TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MONTH 2021 1

Efficient State-space Exploration in Massively
Parallel Simulation Based Inference

Sourabh Kulkarni, Member, IEEE, and Csaba Andras Moritz, Senior Member, IEEE

Abstract—Simulation-based Inference (SBI) is a widely used set of algorithms to learn the parameters of complex scientific simulation
models. While primarily run on CPUs in HPC clusters, these algorithms have been shown to scale in performance when developed to
be run on massively parallel architectures such as GPUs. While parallelizing existing SBI algorithms provides us with performance
gains, this might not be the most efficient way to utilize the achieved parallelism. This work proposes a new algorithm, that builds on an
existing SBI method - Approximate Bayesian Computation with Sequential Monte Carlo(ABC-SMC). This new algorithm is designed to
utilize the parallelism not only for performance gain, but also toward qualitative benefits in the learnt parameters. The key idea is to
replace the notion of a single ’step-size’ hyperparameter, which governs how the state space of parameters is explored during learning,
with step-sizes sampled from a tuned Beta distribution. This allows this new ABC-SMC algorithm to more efficiently explore the
state-space of the parameters being learnt. We test the effectiveness of the proposed algorithm to learn parameters for an
epidemiology model running on a Tesla T4 GPU. Compared to the parallelized state-of-the-art SBI algorithm, we get similar quality
results in ∼ 100x fewer simulations and observe ∼ 80x lower run-to-run variance across 10 independent trials.

Index Terms—Parallel Algorithms, Approximate Bayesian Computation, Simulation-based Inference, Likelihood-free Inference,
Bayesian Inference, Statistical Machine Learning, Stochastic Optimization, Epidemiology, Compartmental Models, COVID-19, High
Performance Computing, GPU.

F

1 INTRODUCTION

S IMULATION-Based Inference (SBI) shows great promise
in a wide variety of scientific domains. It is used to

learn the parameters of complex simulation models which
attempt to capture the underlying physical processes. The
learned parameters can then be used to generate predic-
tions from the model. To give a few examples, SBI can
be used to learn key parameters for elementary particle
collision experiments [1], in biology to study the dynamics
of protein networks [2], and in epidemiology for learning
the key parameters of an epidemic such as COIVD-19 to
understand and predict the spread as well as to inform
large-scale interventions [3]. Other areas of science where
SBI algorithms are used are cosmology [4], [5], cognitive
science [6], econometrics [7], and systems biology [2], [8],
[9], [10].

SBI algorithms have been widely used in these disci-
plines because, unlike other statistical inference algorithms,
SBI does not require additional criteria to be satisfied to
perform parameter learning for a model – simply the abil-
ity to simulate the model suffices. Typically, alternatives
to SBI algorithms are the family of Markov Chain Monte
Carlo algorithms (MCMC) [11], which require the ability to
compute the ‘likelihood function’ over the model, which is
intractable for many scientific models [12]. For example, in
modelling an epidemic, we must consider subpopulations
which are often not observable (e.g., the number of untested
infections), and in doing so, the epidemiological model
ends up having an intractable likelihood function. In such
scenarios, SBI algorithms are the only option for parameter

• S. Kulkarni and C.A. Moritz are with the Department of Electrical and
Computer Engineering, University of Massachusetts, Amherst, MA.
E-mail: skulkarni@umass.edu

Manuscript received April 19, 2005; revised August 26, 2015.

learning.
Primarily, these SBI methods are implemented on CPUs

[13]. This is not efficient, as these algorithms have a lot of
potential for parallelism and hence can benefit from GPUs
and other massively parallelized compute architectures. At
the core of all simulation-based inference algorithms is the
ability to compute a large number of simulations with
randomly sampled parameters. The simulations are then
compared with real-world observations to gauge the quality
of the parameters used in the simulation. The algorithms
then iteratively converge to the best possible parameters.
These massive number of simulations can, in most SBI algo-
rithms, be performed in an embarrassingly parallel fashion
per iteration [12].

Parallelized versions of existing SBI algorithms have
been developed and have shown to provide performance
benefits [14], [15]. However, they are not the best ways
to utilize the achieved parallelism, as they were originally
designed to perform best in the regime of progressing one
simulation at a time. As part of this work, we perform ex-
periments with these massively parallel versions of existing
SBI algorithms to show that they have inconsistent results
across independent runs. They also tend to get stuck in local
minima and hence provide sub-optimal results. With the
ability to perform up to 100K simulations in parallel at a
time [14], [15], we require novel ways to obtain the best
possible progress from them and to avoid the issues that
arise with using parallelized versions of existing algorithms.

In this work, we propose a new simulation-based in-
ference algorithm, which is designed to perform best in
such a massively parallel regime. The algorithm builds on
an existing SBI algorithm, known as Approximate Bayesian
Computation with Sequential Monte Carlo (ABC-SMC). The
proposed algorithm exploits the achieved parallelism not

ar
X

iv
:2

10
6.

15
50

8v
1

 [
cs

.D
C

]
 2

9
Ju

n
20

21

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MONTH 2021 2

only for performance gain, but also for a qualitative im-
provement in the results achieved. The key idea of this new
algorithm is an efficient method of parameters’ state-space
exploration; this is achieved by a novel way to repurpose
the notion of ‘step-size’ in massively parallel stochastic
optimization processes.

The ‘step-size’ (also known as the ‘learning rate’ in
some literature), in SBI and other stochastic optimization
algorithms in general, is an important hyperparameter. This
hyperparameter, at each stage of the algorithm, captures
the amplitude of the change introduced to the parameters
being evaluated. In current methods, the step size is usually
a single number, and is tuned carefully as the algorithm
progresses, usually having greater values initially, and lower
values as the algorithm approaches convergence. The key
contribution of this work is the introduction of a new
concept – step–size distribution. When 100K simulations
occur in parallel, using a single step size does not introduce
enough ‘diversity’ in the parameters to make efficient use
of all those simulations toward the convergence process.
The proposed method, on the other hand, allows each of
those 100K simulations to have an independent step-size
which is sampled from the step-size distribution, which is a
tuned Beta distribution. Instead of using complex methods
for tuning the single step size, the proposed method uses
simple ratios that encode the progress of the algorithm to
tune the PDF of the Beta step-size distribution. We call this
new algorithm ’Parallel ABC-SMC with Beta-Distributed
Step-Sizes’, or P-ABC-SMC BDSS in short.

P-ABC-SMC BDSS is evaluated for its effectiveness to
perform parameter learning for a stochastic epidemiology
model used for understanding and predicting the spread of
COVID-19. The algorithm is compared with the parallelized
version of the current state-of-the-art ABC-SMC algorithm,
where step-size tuning is performed using MCMC. This
baseline is called P-ABC-SMC MCMC in short. Experiments
are performed on a Nvidia Tesla T4 GPU. We show that the
new method provides better quality of learned parameters
in fewer number of simulation steps, and better consistency
across independent trials. Experiments of 10 independent
trials showed consistently better results - the P-ABC-SMC
BDSS obtained better results than P-ABC-SMC MCMC in
∼ 100x fewer simulations, and ∼ 80x lower run-to-run
variance. Experiments also confirm that P-ABC-SMC BDSS’s
performance efficiency improves with increasing degree of
parallelism.

While we use the epidemiology model as an example, P-
ABC-SMC BDSS should be effective wherever the ABC-SMC
method is used. Furthermore, this work shows promise
not only for the ABC-SMC algorithm, but for all stochastic
optimization algorithms. In these algorithms, there exists
a method of tuning step-sizes. These methods could be
replaced instead by the notion of a tuned step-size distribu-
tion - like the one presented in this work. This could open
up new possibilities of developing parallelized versions of
these stochastic optimization algorithms - consequently ob-
taining performance gains on contemporary parallel hard-
ware architectures.

The rest of the paper is organized as follows: Section
II provides background information on the epidemiology
model used to test the new algorithm, and the basics of

SBI algorithms and the current state-of-the-art ABC-SMC
MCMC, over which the proposed algorithm improves upon;
Section III Describes in detail the proposed P-ABC-SMC
BDSS algorithm and its implementation; Section IV De-
scribes the experimental setup, and the results obtained;
Section V discusses the results and implications of this
work to the wider domain of stochastic optimization in the
massively parallel regime.

2 BACKGROUND

In this work, we are proposing a new algorithm to perform
SBI on a massively parallel scale. We are demonstrating
the effectiveness of this algorithm by comparing it to a
parallelized version of the current state-of-the-art SBI. To
make this comparison, both are used in an epidemiolog-
ical application to understand and predict the spread of
COVID-19 in a nation given their case data. This is done
by using a stochastic epidemiological model, which can be
used to simulate, on a per day basis, the case outcomes of
a population given that we know the key epidemiological
parameters. Hence, the task for both the SBI algorithms is to
find a distribution over parameters that can i) best explain
the currently observed case data for a certain country, and
ii) accurately predict the future case data for that country.

In this section, we shall first establish the mathematical
notations that will be used throughout the paper, which
are typical of these statistical inference methods, but differ
from other ML literature. Secondly, we describe in detail
the epidemiological model. Then we shall discuss how SBI
algorithms are used to learn parameters for the model using
real-world case data. Third, we shall discuss the current SBI
algorithms – the Approximate Bayesian Computation (ABC)
and a more advanced version – the ABC with Sequential
Monte Carlo (ABC-SMC).

2.1 Mathematical Notations for Statistical Inference

In statistical inference, a model is defined to be a joint
probability distribution over its parameters (denoted by θ),
and its observed variables (denoted by x). The model as
a probability distribution is hence denoted as p(θ, x). The
parameters are known to exist in a certain domain a priori,
either due to expert knowledge, or according to how the
model is designed. This distribution in which the parame-
ters belong before the learning process starts is known as
the prior and is denoted by π(θ). The models are generative
in nature and can be simulated for a given set of parameters
to generate observations Ds ∼ p(x|θ). The evidence, or real-
world observations, are denoted by Do. The likelihood of
observingDo for a given set of parameters theta is called the
likelihood function L = p(Do|θ). The distribution obtained
after the parameters are learnt using the observed data Do

is called the posterior p(θ|x = Do).
It is important to note that these statistical ‘inference’

algorithms are solving a ‘learning’ problem, and the ex-
pression ‘parameter inference’ in the statistics literature
corresponds to ‘parameter learning’ in ML literature. This
should not be confused with ‘inference’ as used in the ML
literature, which often means the process of estimating an
output with a model, given the input. In this paper, the term

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MONTH 2021 3

Fig. 1: Overview of the epidemiology model flow. The population is divided into 6 sub-populations. On a daily basis,
the number of people moving from one sub-population to the other are simulated with a Poisson process, where the rate
parameters of these processes are given by the current sub-populations and the transmission parameters (infection rate,
death rate, etc.). The transition from susceptible to infected is a function of the observed sub-populations which captures
the response of a population to an increasing number of cases [15].

’parameter inference’ from statistical inference literature is
referred to as ’parameter learning’.

2.2 Stochastic Epidemiology Model for COVID-19

The epidemiology model considered in this work belongs
to the class known as compartmental models. In this model
class, the population is divided into several subpopulations,
and the spread of infectious disease is modelled as the flow
of people from one sub-population to other.

The model considered in this work [3] attempts to
capture the spread of COVID-19 using six subpopulations,
three observed and three unobserved. We include a brief
overview of the model, but refer the reader to the Supple-
mentary Material of [3] for further detail. The transmission
across these sub-populations is modeled with a Poisson pro-
cess approximated in discrete 1-day timebins using the tau-
leaping method [16]. The model consists of 8 parameters:

θ = [α0, α, n, β, γ, δ, η, κ] (1)

with a uniform prior distribution:

π = p(θ) = U(0, [1, 100, 2, 1, 1, 1, 1, 2]) (2)

These prior values were taken as-is from the original
model description [3]. They signify the reasonable ranges
in which the parameters of interest could lie. When we sim-
ulate the model with a sample set of these parameters,we
get the following state vector:

X = [S, I, A,R,D,Ru], (3)

which consists of the sub-populations of Susceptible people,
undocumented Infected, Active confirmed cases, confirmed
Recoveries, confirmed fatalities Dying, and unconfirmed
Ruemoved. The Removed sub-population, Ru, comprises
those who have recovered or died, but have not been tested.
This simulation is typically performed over several days or
months and the generated data can be compared with the
real-world values of the observable subpopulations.

One of the key challenges in this model is that the state
vector X is partially observed; i.e. only the A,R,D values
are available from observed data. This makes the likelihood
function p(D|θ) intractable for this model, as the unob-
served sub-populations of the model S, I,Ru are required to
be ‘integrated-out’ - the likelihood function is defined over
all possible values of those three subpopulations, and the only
way to obtain the likelihood values for use in the learning
process would be to integrate the likelihood function over
all possible values of those three sub-populations. Instead,
simulation-based inference such as ABC is used to perform
inference over this model (See next subsections).

Parameter α0 refers to the base infection rate, while α
is the coefficient of the function that captures the changes
in infection rate based on the observed sub-populations
(A,R,D). n is the exponent t o the function. Based on these
parameters, the total infection rate is assumed to follow:

g(A,R,D) = α0 +
α

1 + (A+R+D)n
(4)

This function can be modified to capture additional
changes to the infection rate based on A, R, Do values or
even using external data.

The parameters γ, β, and δ are the positive test rate,
recovery rate and fatality rate respectively. The parameter η
captures the effectiveness of testing protocols, as the rate for
unconfirmed infected to be recovered without ever being
confirmed is given by ηβ. The initial value parameter, κ,
encodes the number of unobserved infected cases, as a
fraction of A, at the start of the simulation.

The underlying COVID-19 time-series data, provided by
Johns Hopkins University [17], contains daily case numbers
for [A,R,D].

In its first step, the model initializes the remaining vari-
ables with Ru = 0, I0 = κ ∗ A0, and S = P − (A0 + R0 +
D0 + I0) with P being the total population count at the first
time point.

The second step is to calculate the hazard function h
which provides the average update of the model parameters
within one day

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MONTH 2021 4

h(S, I, A,R,D,Ru) =

(
gS

I

P
, γI, βA, δA, βηI

)
. (5)

with g described in equation 4.
The third step is to sample the transmission numbers

from a Poisson distribution with the rate parameter set
according to these average numbers. Instead of a Poisson
sampling with h as parameter, we chose an approximation
with normal distributions with mean h and variance

√
h and

use the floor of the numbers. This approximation allows us
to perform highly optimized parallel simulations as seen in
the next section.

The fourth step is to apply the sampled transmission
amounts to obtain updated numbers for the next day (S →
I , I → A, A → R, A → D, I → Ru, ordering according to
h function).

The second to fourth steps are repeated for the number
of days for which case data is available. Eventually, the
numbers for A, R, and Do can be compared to the real
measurements.

2.3 Approximate Bayesian Computation
The Bayesian statistical inference approach of learning pa-
rameters is through obtaining the posterior over parameters
θ for a model p(θ, x) and given observations Do, which is
given by Bayes’ rule,

p(θ|Do) =
p(Do|θ)p(θ)
p(Do)

(6)

As discussed earlier, the likelihood function p(Do|θ) is
intractable, since St, It, and Rut are unobserved. This pre-
cludes some approximate Bayesian inference methods such
as MCMC. In the ABC approach, the model simulations are
utilized to perform parameter learning. First, we sample the
parameters θ from their prior θ∗ ∼ π(θ). Next, we simulate
a forward pass of the simulator (as described in Section 2.2
for example) to generate observations Ds ∼ p(x|θ = θ∗)
over the number of days we have data for. The simulated
observations are then compared to the real-world evidence
using a distance function dist(Ds, Do). For this model we
used the Euclidean distance [3]. Finally, the sampled param-
eters θ∗ are accepted if the distance function is less than a
certain tolerance value ε, dist(Ds, Do) ≤ ε. This is repeated
until we accept the target number of posterior samples. It
can be shown that as tolerance ε approaches 0, the approx-
imate posterior converges to the true posterior [18]. The
approximation is also better with more number of posterior
samples.

Fig. 2 shows an overview of the ABC process as a flow
chart. To summarize, in ABC we aim to obtain samples from
an approximation to the posterior:

p(θ|x = Do) ≈ p(θ|dist(Do, Ds) ≤ ε) (7)

where Do is the ground truth data, Ds is simulated data
depending on θ, and p(θ) is the prior [3]. The dist function
is the Euclidean distance [3].

The number of simulations that need to be performed
to obtain samples below a certain tolerance value increases
exponentially, the tolerance value goes lower. Hence using

Fig. 2: Overview of the Approximate Bayesian Computation
(ABC) algorithm.

vanilla ABC algorithm becomes infeasible to achieve arbi-
trarily small tolerance values. Instead of choosing a fixed
tolerance, sequential Monte Carlo can be used to transform
an initial set of samples to a high quality set with a decreas-
ing sequence of tolerances ε and using ABC. This algorithm
is called SMC-ABC [3], [19], and shall be explained in the
next subsection.

2.4 ABC with Sequential Monte Carlo
By combining the ABC algorithm with the Sequential Monte
Carlo process, we get ABC-SMC. In essence, the ABC-SMC
algorithm performs repeated applications of the Bayes rule
(see Eq. 6) via the ABC process to obtain better and better
quality posterior samples. In ABC-SMC, the algorithm starts
with a large tolerance value ε0. Then, through a sequence of
several stages, the algorithm obtains sequentially lower tol-
erance values until the target tolerance value εt is reached.
In each of its stages i, ABC-SMC processes the posterior
of previous stage pi−1(θ|x = Do) to form the prior of the
current stage πi(θ). In turn, the posterior of current stage
becomes the prior of the next stage.

Fig. 3 provides an overview of the ABC-SMC algorithm.
As the figure shows, the algorithm builds on the primary
ABC framework, and each stage of the ABC-SMC resembles
the ABC algorithm. Key differences between ABC and an
ABC-SMC stage are: i) preparation of current stage’s prior
from previous stage’s posterior, ii) how parameters are
sampled from this prior, iii) the notion of introducing pertur-
bations to sampled parameters, and iv) how the tolerance is
computed for the next stage based on the samples accepted
in the current stage. We shall now go through in detail how
each of these steps are performed.

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MONTH 2021 5

Fig. 3: Overview of the Approximate Bayesian Computation
with Sequential Monte Carlo (ABC-SMC) algorithm.

The initial stage of ABC-SMC, since there is no previous
stage to obtain samples from, is a simple ABC stage with
a large tolerance value ε0. When the required number of
samples N are obtained, they are used to determine the
tolerance for next stage ε1. For all stages, (including the 0th

stage) This is done with the help of the survival ratio α:

εi+1 = Percentileα(distθ∀θ ∈ pi(θ|x = Do)) (8)

Here, the survival ratio α is a hyperparameter. For the
purposes of this work, we set it to α = 0.5. Hence, at each
stage, the distance metric dist(Ds, Do) of the 50th percentile
(i.e. median) of the accepted samples at stage i becomes
the tolerance for next stage εi+1. Naturally, for all values of
α ∈ (0, 1) the tolerance values are strictly non-increasing.

At the start of all stages other than 0th, the prior of
current stage i is computed using the posterior of previous
stage pi−1(θ|x = Do) and the tolerance of current stage εi

as follows:

πi(θ) = {θ ∈ pi−1(θ|x = Do)|distθ < εi} (9)

i.e., the prior of current stage πi(θ) is the set of all param-
eters θ in the posterior of previous stage pi−1(θ|x = Do),
that have a distance metric Dθ smaller than the tolerance εi.
For a survival ratio α = 0.5, only the top half of the samples
from previous stage’s posterior are included in the current
stage’s prior.

Next, each of the samples in the current stage’s prior
πi(θ) are assigned a weight wi(θ):

wi(θ) = εi − distθ (10)

Hence, a sample is given a higher weight, the lower its
distance metric is compared to the current tolerance εi.
These weights are then used to perform weighted random
draws θ∗ from πi(θ):

θ∗ ∼ Categorical(πi(θ), wi(θ)) (11)

After drawing a sample from prior θ∗, a perturbation is
introduced using a Gaussian random walk:

θ∗∗ ∼ N (θ∗, s) (12)

Here, the variance of the Gaussian used to perform a ran-
dom walk step is called the step size s. This ensures that new
samples are explored in the vicinity of the samples accepted
in the last stage in hopes of finding samples with a lower
distance metric. For the perturbations to be effective, the
step size needs to be tuned carefully - too small, and the
ABC-SMC process gets stuck in a local minima; too large,
and the process shall no longer obtain any good samples.

After obtaining a perturbed sample θ∗∗, the subsequent
steps are similar to ABC - simulate model, compute distance
function, and perform accept/reject. We also maintain the
ratio of accepted to rejected samples θ∗∗, which is used to
tune the step size s. It is here, at the steps of tuning the
step size and introducing perturbations, where the proposed
algorithm differs from the current state-of-the-art. Hence,
to understand the significance of the proposed algorithm,
it is essential we review in-depth the step-size tuning and
perturbation steps as they are in the current state-of-the-art
algorithm.

2.4.1 MCMC Step Size Tuning and Perturbations

In the state-of-the-art version of ABC-SMC [3], the step size
tuning is performed by using Metropolis-Hastings (MH) Al-
gorithm [20], which is one of the most widely used MCMC
algorithms. The purpose of using this algorithm is two-fold
- i) to ensure that the perturbation is taking the parameter
in a better region than the original location, and ii) to tune
the step size so that the steps taken during perturbation
are optimal. In this algorithm, the parameter perturbation
θ∗∗ is considered as a proposal. For this proposal, the
algorithm computes two transition probabilities - one that of
transitioning from θ∗ to θ∗∗, and the other way around from
θ∗∗ to θ∗. Using these transition probabilities, the algorithm

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MONTH 2021 6

computes a ’metropolis acceptance ratio’ AM (θ∗∗, θ∗) as
follows:

AM (θ∗∗, θ∗) = min

(
1,
p(θ∗∗)g(θ∗|θ∗∗)
p(θ∗)g(θ∗∗|θ∗)

)
(13)

The proposal θ∗∗ is only accepted if AM (θ∗∗, θ∗) > U(0, 1)
where U(0, 1) is a random draw from a uniform distribution
between 0 and 1. Of the θ∗∗ that is accepted for simulation,
we compute another empirical acceptance ratio - by finding
out how many of these perturbed parameters achieve the
distance metric distθ∗∗ below the tolerance εi:

A(θ∗∗) =
numaccepted

numattempts
(14)

In MH, a step-size adaptation is done to maintain this
empirical acceptance ratio as close to possible to the target
acceptance ratio AT = 0.234:

snew = sold ∗
(A(θ∗∗)−AT)

(1−AT)(numaccepted + 1)
(15)

This adaptation is performed usually in the first 10% of
the ABC-SMC process, after which the rest of the process
continues with a fixed step-size. This is done to avoid the
step size becoming infinitesimal, which leads to the ABC-
SMC process coming to a complete stop.

3 DESIGN

In this section, we shall first describe how we develop a
massively parallel version of the current ABC-SMC MCMC
algorithm for the epidemiology model. Then, we shall
discuss some of the issues encountered in this approach
and the sources of incompatibility of MCMC-based step-
size tuning and massively parallel simulations. Then, we
shall go in-depth on the proposed algorithm which takes
a novel approach on how the concept of step size can be
reinvigorated for the massively parallel simulation regime.

3.1 Parallel ABC-SMC with MCMC Tuned Step-Size
In earlier work [14], [15], we explored the possibility of
massively parallel simulations of the epidemiology model
for COVID-19. We achieved up to 500k parallel 50-day
simulations for the model. Using those massively parallel
simulations, we show that ABC for parameter learning can
be accelerated using GPUs and other emerging hardware
accelerators.

In this work, as a first step and to set up a baseline, we do
the same for the current state-of-the-art ABC-SMC MCMC
algorithm, i.e. to develop P-ABC-SMC MCMC. The paral-
lelized simulation kernel used in the previous work’s ABC
process is used as-is. This demonstrates the re-usability and
modularity of the proposed approach. We keep the degree of
parallelism to 100k, but the simulation is done for 120 days.
In this work, the challenge is to perform parallelized draws
of θ∗ (equation 11), parallelized perturbations for θ∗∗, and
most importantly, parallelized MH algorithm for step-size
tuning.

The parallelized draws from the current stage’s prior
πi(θ) were enabled by the tensorized categorical distribu-
tion. For parallelized perturbations through Gaussian ran-
dom walk, we employ the reparamterization trick similar to

one performed in variational auto-encoders [21], where all
parameters are sampled from U(0, 1) and then transformed
into their corresponding domains.

For step-size tuning, the adaptation is done once per
batch of 100k parallel simulations. During the simulation,
we compute the empirical acceptance ratio which is then
used to tune the step size for the next batch of 100k parallel
simulations. This is done for the first 10% runs of the P-
ABC-SMC process.

This approach provides tremendous performance gains
- the MATLAB code of the non-parallelized state-of-the-art
(ABC-SMC MCMC) implemented in [13] on a Xeon CPU,
reportedly takes ∼ 2 hours, while the parallelized version
developed by us (P-ABC-SMC MCMC), run on the Nvidia
Tesla T4, takes only ∼ 400 seconds, which represents a
∼ 18x performance gain. This provides a great baseline
for the proposed algorithm, which performs even better as
evidenced in later sections.

3.2 Parallel ABC-SMC with Beta Distributed Step-Sizes

As discussed earlier, the main contribution of the pro-
posed algorithm is generalizing the concept of step-size
in a massively parallel simulation regime. This is done
by replacing the ’regular’ Gaussian random walk with a
MCMC tuned step size (described in the earlier section, see
Equations 12,13,14,15) with a hierarchical Gaussian random
walk, where step size of the random walk process itself
is sampled from a tuned Beta distribution. Hence, each of
the 100k simulations being run in parallel have their own
unique step size, which is sampled from a Beta distribution.
The resultant distribution of perturbations now contains a
homogeneous mix of step sizes which efficiently explore the
parameter space. In this section, we shall first go through the
high-level motivation in the development of this algorithm,
followed by a detailed description of the algorithm.

3.2.1 Exploration and Exploitation in the Massively Parallel
Regime
One of the key concepts in machine learning and stochastic
optimization is that of the exploration-exploitation trade-
off. The goal of a ML algorithm is to find the best set of
parameters for a model given data. This involves iteratively
taking steps in the parameter state space. The size of the
steps being taken at any given iteration of the algorithm
is one of the most important aspects of the algorithm.
Initially, the step-size is large to quickly find areas of lower
metric (or ’loss’) values. This is known as the exploration
phase of the algorithm. In the later stages of the algorithm,
the step size is small, to avoid moving out of the current
minima and to obtain the best possible local value, known
as exploitation. Hence, in the initial stages, the algorithm
trades off exploitation for exploration, while in the later
stages, it trades off exploration for exploitation.

In the massively parallel regime, this exploration-
exploitation trade-off is no longer required - there is enough
parallelism for both. By careful design of how step sizes
are allocated to the 100k simulations, a careful balance of
exploration ıand exploitation can be achieved to get the best
of both. While some of the 100k simulations explore new
space, others exploit the small gains that can be achieved

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MONTH 2021 7

Fig. 4: Step-sizes sampled from Beta distribution of differ-
ent shape parameters, which are representative of various
stages of the P-ABC-SMC process. See Fig. 5 on how these
step-size samples affect the Gaussian random walk pertur-
bations in the various stages of the P-ABC-SMC process.

with small step sizes. This balance provides unique bene-
fits throughout all stages of the ABC-SMC algorithm. The
important question, then, is how to strike this balance of
allocation of parallel simulations to explore or exploit (and
everything in between)? This the the main intuition behind
this work - this balance is achieved with the help of a tuned
Beta distribution.

3.2.2 Beta-Distributed Step-Sizes

The Beta distribution is a continuous probability distribu-
tion defined in the interval [0, 1]. The shape of Beta distribu-
tion’s Probability Density Function (PDF) is defined by two
shape parameters denoted (confusingly so) as Beta(α, β).
It is through changing these shape parameters that we can
modify the Beta distribution’s PDF. For the purposes of this
algorithm, this modified PDF is used a allocation device which
determines step sizes for each of the 100k simulations being run
in parallel.

Hence, the main reason for choosing Beta distribution
instead of, for example, a truncated Gaussian, is because of
how malleable the PDF is with the use of its shape param-
eters. These shape parameters provide an efficient way to
perform the step-size allocation in a dynamic fashion. As
the mass of the PDF shifts closer to the near-zero region (see
Figure 4), it naturally adapts to this limit. On the other hand,
a truncated Gaussian does not provide the same control and
its PDF does not change naturally in the near-zero region,
but rather is cut-off abruptly.

Fig. 4 shows 3 typical distributions of step sizes sampled
from 3 different configurations of the Beta shape parameters.
The shape parameters are chosen to be indicative of the
initial (red), intermediate (yellow), and final (blue) stages
of the ABC-SMC algorithm. In the initial stages, the idea
is to allow for exploration, which requires that we allow
for all possibilities of step sizes, but there should also be
a slight bias toward smaller step sizes. This is captured
by the Beta(1, 2) distribution. As the ABC-SMC process

(a) Initial Stage

(b) Intermediate Stage

(c) Late Stage

Fig. 5: Demonstrating the distribution of perturbed samples
in three scenarios of P-ABC-SMC progression, with original
position at 0.5; (a) Initial stages; (b) Intermediate stages; (c)
Late stages. Plots show how while the single step-size ap-
proach clearly trades of exploration to exploitation as stages
progress, the proposed Beta step-size approach provides a
balance of exploration and exploitation throughout all the
stages.

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MONTH 2021 8

Fig. 6: Overview of the Parallelized ABC-SMC with Beta-Distributed Step-Sizes (P-ABC-SMC BDSS) algorithm. Highlighted
in blue is the section changed from original ABC-SMC towards development of parallel ABC-SMC. Highlighted in red is the
section involving the novel perturbation technique, with step-size distribution and sampling of Beta-distributed step-sizes
during the perturbation step. The process of Beta distribution tuning is also shown.

progresses, it becomes increasingly unlikely that a very large
step size would yield better results, so the bias should move
increasingly toward lower values and the spread should
tighten. These changes are captured by the distributions
Beta(0.5, 5) and Beta(0.1, 15).

Fig. 5 shows how these step size samples lead to actual
perturbations in the Gaussian random walks for a parameter
sample at 0.5. To compare with the baseline algorithm, we
also show how the perturbations emerge from the typical
values MCMC tuned step sizes in the respective stages.
It can be clearly seen that through the progression of the
P-ABC-SMC algorithm, the MCMC tuned step results in
perturbations that are initially moderately exploratory, but
quickly become biased toward pure exploitation in the
intermediate and late stages. Contrarily, the perturbations
emerging from the BDSS approach, while becoming in-

creasingly biased toward exploitation, still maintain the
exploratory aspect to them thanks to the wider tail of the
distributions throughout the P-ABC-SMC algorithm.

As shall be seen in the next section, this difference in
the distribution of the perturbations between the MCMC
and BDSS approaches provides great benefits in terms of
avoiding local minima and efficiency in the number simu-
lations required. Although the plots in Fig. 4 show how the
typical shapes of the Beta distribution should look like, we
still need a way to ensure the shape changes according to
the P-ABC-SMC process. To ensure the effective adaption of
the shape of the Beta’s PDF, we employ tuning steps, which
are discussed in detail now.

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MONTH 2021 9

3.2.3 Tuning the Beta Step-Size Distribution
In P-ABC-SMC, the progress of the ABC-SMC algorithm is
captured by two metrics - the number of stages completed,
and the tolerance of the current stage. In the case of P-ABC-
SMC with MCMC tuned step sizes, we did not require to
take all of the above factors into consideration - the tuning
was performed using the Metropolis acceptance ratio and
the empirical acceptance ratio (see background section). In
the P-SBC-SMC BDSS, we are not using MCMC, and we also
do not perform any intermediate accept/reject steps based
on the transition probabilities.

Instead, we focus on the two metrics to track the progress
of the P-ABC-SMC algorithm and use them to tune the
Beta distribution. The perturbation step of the proposed
algorithm is as follows:

sij ∼ Beta
(
αi =

εi

ε1
, βi = 2i

)
∀j ∈ {1, 2, . . . , 100k} (16)

and
θ∗∗j ∼ N (θ∗j , s

i
j)∀j ∈ {1, 2, . . . , 100k} (17)

Here, we can see that the shape parameters of the Beta
are tuned using the the current tolerance value εi and the
current stage of P-ABC-SMC process i. In the regime of
operation α ∈ [0, 1], β ∈ [1,∞), they loosely correspond
to the mean and precision (i.e. inverse variance) of the Beta
distribution. Hence, by setting αi = εi

ε1 , we move the mean
of the step size distribution closer to 0 as we keep getting
better tolerances. At the same time, as the number of stages
increases, βi = 2i also increases, effectively decreasing the
variance. The new P-ABC-SMC BDSS algorithm is summa-
rized in Fig. 6

There are two other methods of parametrization in
a Beta distribution - the mean-variance and the mode-
concentration parameterizations. We try both of these, but
the original α, β parameterization performs the best.

3.3 Theoretical Correctness and Convergence Guaran-
tees for ABC-SMC
Likelihood-based MCMC methods such as Gibbs’ Sampling
or Metropolis-Hastings [20], give asymptotic guarantees of
converging to the true posterior of the model as the number
of samples obtained approaches infinity. This guarantee is
in part based on the correctness of the likelihood function.

On the other hand, like all SBI methods, ABC-SMC is
likelihood-free. In these methods, the likelihood function is
approximated by a distance metric, making these algorithms
inherently approximate. To accept samples in the approxi-
mate posterior, these algorithms have an artificial cut-off of
the tolerance value ε. Hence, the only case of correctness
that can be made for SBI algorithms is that as this tolerance
value approaches zero, the approximate posterior converges
to the true posterior. There are no asymptotic guarantees
though; even after an infinite number of ABC-SMC steps,
the tolerance is not guaranteed to approach zero. Hence,
ABC-SMC algorithms are more accurate when they can
manage to accept approximate posterior samples at lower
tolerance values. This is applicable to all ABC-SMC algo-
rithms, including the two we test in this work.

Both MCMC-based and BDSS approaches to ABC-SMC
differ in methods of proposing samples to the ABC step; the

actual acceptance and determination of the tolerance for the
next stage is done in the same way. Hence we believe that
for both of these algorithms the same guarantees hold.

Given the lack of theoretical guarantees, we instead vali-
date these algorithms on the ability of approximate posterior
samples accepted by them to predict unseen data. This is
described in more detail in Section 4.2.

4 EXPERIMENTS AND RESULTS

To test the baseline and proposed algorithms, we use them
to learn parameters for the stochastic epidemiology model
(section 2.1). The model has a set of 8 parameters that
governs how an epidemic spreads through a population of
a nation. The goal of the parameter learning process is to
obtain the parameters with the least value of distance metric
from the real-world case data. For the purposes of this work,
we trained on 120-day case data for Italy.

The algorithms are evaluated on three metrics - best tol-
erance achieved, simulation efficiency, consistency in run-to-
run variance. The best tolerance achieved demonstrates the
quality of samples achieved - lower the tolerance, better the
parameters fit to real-world data. The simulation efficiency
is measured by how many simulation runs are required
before the algorithm reaches it’s best possible tolerance. The
run-to-run variance describes how consistent the algorithm
is, both in lowest tolerance achieved as well as the simula-
tion efficiency.

Finally, we shall also evaluate the the learnt parameters
in their ability to predict future cases. This is done by using
the 120-day data to learn the parameters, and then using
those learnt parameters to recreate the case data for those
120 day window as well as 30 additional days. These 30
days act like the test data set and allow us to measure the
accuracy of the parameters.

4.1 Performance Comparison
4.1.1 Experiment Setup
To compare the new P-ABC-SMC BDSS with the baseline P-
ABC-SMC MCMC, we perform the task of learning model
parameters from 120-day case data of Italy. We conduct 10
independent trials to gauge the run-to-run variance of both
the algorithms. These trials are conducted for 5 different
levels of parallelism - 10, 100, 1k, 10k, and 100k simulations
per run, respectively. The number of samples to be collected
is set to 1000. For consistency, we establish a stopping
criterion - the P-ABC-SMC inference process stopped on
the stage which reached 1000 simulation runs. Since there
could still be additional simulation runs required for that
stage to finish, the actual number of runs varies from 1000
to 1900. At each stage, we record the tolerance achieved
by each of the algorithms. This allows us to compare the
quality of the samples (tolerance achieved) and the number
of simulation runs required to obatain them. Hence, with
these two metrics, we generate 5 plots, one for each level of
parallelism in Fig 7.

4.1.2 Results
Fig. 7 provides a detailed visualization of the comparison
between the two approaches. When the degree of paral-
lelism is low (see Fig. 7a) with only 10 simulations per

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MONTH 2021 10

(a) Simulations per run: 10 (b) Simulations per run: 100

(c) Simulations per run: 1000 (d) Simulations per run: 10000

(e) Simulations per run: 100000

Fig. 7: Effectiveness of P-ABC-SMC BDSS with increasing degree of parallelism, compared to P-ABC-SMC MCMC.
Experiment run for 120-day case data of Italy, over 10 independent trials limited to the stage which reached 1000 simulation
runs. (a) When only 10 parallel simulations are performed per run, the MCMC based approach performs much better than
BDSS; (b) At 100 simulations per run, the benefits of BDSS are visible - in 4 of the 10 trials, the algorithm manages to break
out of the local mimima; (c) At 1000 simulations per run, we see BDSS has much faster convergence to lower minima in
most of the trials, while the three trials of the MCMC approach that manage to break off from local minima still have
slow convergence; (d) At 10000 simulations per run, all but one trials for BDSS quickly converge to the minima, while the
in the MCMC approach the convergence is much slower; (e) for 100k simulations per run, the BDSS approach converges
consistently to the minima within 10 simulation runs, while the MCMC approach still has one trial stuck in local minima,
and the rest converging 100 times slower and to higher minimas than the proposed.

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MONTH 2021 11

(a) Predictive Simulation from P-ABC-SMC MCMC in 10
simulation runs

(b) Predictive Simulation from P-ABC-SMC BDSS in 10
simulation runs

(c) Predictive Simulation from P-ABC-SMC MCMC in 1000
simulation runs

(d) Predictive Simulation from P-ABC-SMC BDSS in 1000
simulation runs

Fig. 8: Comparing the predictive simulations of case-data using learned parameter distributions in early stages(a,b) and
late stages (c,d) for P-ABC-SMC MCMC and P-ABC-SMC BDSS. Real world case data plotted in black. Training performed
on 120-day case data. Predictive simulations of case-data are re-created from day zero. Plots are median (solid color lines)
with 99th percentile bounds (light color bands).

run, the P-ABC-SMC MCMC approach is clearly superior,
as the proper tuning of the individual step size yields better
results than obtaining 10 samples from a Beta distribution
with wide tails.

With increasing degree of parallelism, though, the P-
ABC-SMC BDSS starts to show its benefit. At just 100
simulations per run (see Fig 7b), we can observe that while
P-ABC-SMC MCMC observes substantial benefits, P-ABC-
SMC BDSS performs even better. Half of the trials manage
to perform comparable to P-ABC-SMC MCMC, the other
half comfortably outperform, eventually approaching the
best tolerance values achieved by even the later experiments
with higher degree of parallelism, though they take the
entirety of their allocated simulation-runs budget to do so.

With the number of simulations per run up to 1000 (see
Fig 7c), we observe that 3 of the 10 P-ABC-SMC MCMC
trials break the apparent local minima at the tolerance value
of∼ 10, and begin to converge toward lower values, though
never converging fully. On the other hand, P-ABC-SMC
BDSS manages to converge to the best achieved tolerance
in 6 of the 10 runs, and does so in just 250 simulation runs
instead of the 1000-run limit.

The performance gap widens further with 10,000 simu-
lations per run (see Fig 7d), Where the performance gain of

P-ABC-SMC MCMC is only slight, while P-ABC-SMC BDSS
manages to converge fully in 9 of the 10 trials, and all of
them converge in less than 150 simulation runs.

Finally, at 100k simulations per run (see Fig 7e), we see
benefits in both P-ABC-SMC MCMC and BDSS, although
the performance of the BDSS approach is vastly better.
All 10 trials consistently reach close to the best tolerance
in a span of just 10-20 simulation runs. P-ABC-SMC with
MCMC slowly approaches the best achieved tolerance by
the proposed algorithm, but the process stops short in all
trials. One of the trial still remained stuck at the local
minima.

Hence, it is clear that the BDSS approach is clearly su-
perior to the ABC-SMC MCMC approach, especially when
employed in the massively parallel regime of P-ABC-SMC,
for which it was developed. It can also be seen that while
it performs best in degrees of parallelism of 100k, it is also
beneficial to use in the regime of parallelism as low as 100
as that is when it starts to show benefits over P-ABC-SMC
MCMC. The reasons for these results and their implications
are discussed further in the next section.

P-ABC-SMC BDSS achieves a lower average tolerance
value of 3.44 in 10 runs than the P-ABC-SMC MCMC can
achieve in ∼ 1300 runs, which is 4.01. Hence, we report that

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MONTH 2021 12

the proposed algorithm utilizes ∼ 100× fewer simulations
to achieve better tolerance values. As shown in Section 4.3
Moreover, at just 10 runs, the variance of the tolerance across
the 10 independent trials is just 0.002, while the variance of
P-ABC-SMC MCMC at ∼ 1300 runs is 0.16.1.

4.2 Comparing Predictive Simulations from Learned
Parameters

4.2.1 Experiment Setup

We use the parameters learnt from the 120-day training data
are used to simulate the case-data of those 120 days and an
additional 30 days. The case data in question is the number
of confirmed active (A), confirmed recovered (R), and con-
firmed deaths (D) for Italy. If the learnt parameters are good,
the simulated case data should closely resemble the real-
world case data. It is important to note that the similarity of
simulated case data should be considered as being ’samples
from the same underlying distribution’ rather than a direct
match to the real-world data. The purpose of learning the
parameter distributions of the epidemiology model is to
capture the underlying natural process of the epidemic, so
that the simulated data from all posterior samples is the
model’s way of capturing all realistic trajectories the case-
data could take, given the parameters we learnt from the
one real-world trajectory of case data we observed.

One of the key strengths of the proposed algorithm is its
efficiency in the number of simulations required to obtain
good solutions in the parameter space. This is exemplified
in the experiments performed here. We create simulated the
120-day case-data for Italy using ’snapshots’ of intermediate
posterior parameters when both algorithms are 10 and 1000
runs into the ABC-SMC process respectively. The degree of
parallelism is set to 100k simulations per run. The number
of samples accepted is 1000. For each algorithm, we plot the
median along with the 99th percentile range of the case-data
simulations generated from those 1000 parameter samples.
For reference, we also plot the real-world case data in black.

4.2.2 Results

Fig. 8 shows plots generated from these experiments. As
seen in Fig. 8a the parameters obtained by P-ABC-SMC
MCMC algorithm in 10 simulation runs are not even close
to converge and do not generate simulated case data close
to the real-world case-data for Italy. On the other hand,
already at 10 simulation runs, P-ABC-SMC BDSS generates
simulated case-data that shows a really good fit to real-
world case-data (See Fig. 8b).

Fig. 8c and 8d show how the simulated case-data for P-
ABC-SMC MCMC and P-ABC-SMC BDSS using parameters
at 1000 simulation runs. Here we see that both are now
producing accurate simulations of case data that closely
match the real-world case data. Though we can also observe
that P-ABC-SMC BDSS is generating comparable plots in
just 10 simulation runs 8b. Hence, the proposed algorithm
can be terminated much sooner to obtain the same (or better)
quality result than P-ABC-SMC MCMC.

1. These values are computed by excluding the outlier with 9.7
tolerance in case of P-ABC-SMC MCMC in Fig. 7e.

Fig. 9: Runtime Comparison between P-ABC-SMC MCMC
and BDSS. The plot shows the distribution of per-simulation
runtimes of both algorithms, for a batch size of 100k, across
10 trials. The runtimes are very close to each other, with
median values around ∼ 170ms. The MCMC runtime has a
slightly higher variance. The X’s denote the mean runtimes.

4.3 Runtime Comparison
The experiments were run on a Tesla T4 GPU on the
Google Colaboratory 2. The goal here is to compare the
relative runtime performance of the two algorithms, rather
than to observe the absolute best performance numbers
which could be achieved by using higher-end GPUs. We
observe no significant difference in performance across the
two ABC-SMC implementations. In both the P-ABC-SMC
MCMC and BDSS, we observe an average of ∼ 170ms per
100k simulation run (see Figure 9). Hence, with a similar
runtime, the simulation efficiency benefits described in 4.1
directly translate to faster runtime, as P-ABC-SMC BDSS
achieves better tolerance values in 10 simulation runs than
P-ABC-SMC MCMC does in ∼ 1300 runs.

We also observe that in both cases, around 50% of
the runtime is spent on the actual simulations (i.e., the
ABC part of ABC-SMC), while the other half is spent in
all the other aspects, such as resampling from previous
stage, MCMC/BDSS Step tuning, perturbations, accept-
reject, sample post processing etc. Specifically, P-ABC-SMC
MCMC reported 84ms of time for actual simulations, while
BDSS reported 84.5ms.

5 DISCUSSION AND CONCLUSION

In this work, we introduce a novel algorithm that is built
specifically for utilizing massively parallel hardware archi-
tectures such as GPUs to enable ∼ 100× fewer simulations
than the current state of the art, while providing better
quality and more consistent results across independent
trails. The key contribution is the algorthimzation of step-
size allocation across arbitrarily large parallel optimization
processes. This algorithm provides a great avenue of uti-
lizing the widely available GPU computing resources for

2. https://colab.research.google.com/

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MONTH 2021 13

scientific simulation models and cutting-edge simulation-
based inference techniques such as ABC-SMC.

5.1 Effectiveness of the Proposed Algorithm in Mas-
sively Parallel Regime
When we consider the regime of massively parallel simu-
lations, the P-ABC-SMC with the MCMC based approach
has two main limitations. The notion of tuning a single step
size along the process, and then sampling a large number
of perturbations in the parameter space with a single step
size is inefficient. Once the step size gets tuned to lower
values with MCMC, the optimization process slows down.
This leads to scenarios where the P-ABC-SMC process is
stuck in a local minima and also leads to inconsistent results
across independent trails.

On the other hand, P-ABC-SMC BDSS, through the
tuned Beta distribution over step sizes, introduces a much
wider variety of parameter perturbations across the paral-
lel simulations. This causes the P-ABC-SMC algorithm to
obtain a wider range of possible good parameter values,
which in turn leads to better results faster. We also see
that through the tuning process, the proposed algorithm
produces highly consistent results across independent trials,
which are better than P-ABC-SMC MCMC, and in much
smaller number of simulation runs. Hence, through the
ABC-SMC process, the parallel simulations in hardware
(P) and the proposed beta-distributed step-size allocation
algorithm (BDSS) form a much better approach to accelerate
simulation-based inference for scientific simulation models
(P-ABC-SMC BDSS). The effectiveness of this algorithm is
exemplified in Fig. 8, which shows that this algorithm has
to be run only for 10 runs to obtain similar or better quality
results than the 1000+ runs for P-ABC-SMC MCMC. The
obtained results are also more consistent, with ∼ 80× lower
variance across independent trials.

5.2 Wider Applicability of Proposed Algorithm
While we demonstrate the effectiveness of this algorithm
by performing the novel ABC-SMC inference on a specific
compartmental epidemiological model for COVID-19, we
believe that the benefits may also translate to the use of
this novel ABC-SMC in other scientific models, as the only
major change required would be the development of the
parallelized version of the scientific simulation model which
we wish to learn the parameter distributions for. This can
be obtained via the ’parallelization-through-tensorization’
approach detailed in [14], [15]. The key idea is to take
a single execution trace of the scientific model’s simula-
tion for a specific parameter configuration, and then to
add an additional dimension (i.e., tensorize) this trace to
now perform the same simulation trace for an arbitrarily
large number of parameter configurations. These scientific
simulation models, parallelized in this fashion, could be
from a vast range of scientific domains, from elementary
particle physics [1] to cosmology [4], [22] (And everything
in between [12]).

Furthermore, the results obtained in this work are
promising not only for the ABC-SMC algorithm, but also for
stochastic optimization algorithms in general. It is theoreti-
cally possible to generalize the concept of parallel step-size

allocation through a tuned step-size distribution to other
stochastic optimization algorithms such as gradient descent,
where the size of the step taken in direction of the gradient
can be sampled from a distribution instead of being a single
value.

ACKNOWLEDGMENTS

The authors would like to thank Facebook Research for their
’Probability and Programming’ grant to support this work.

REFERENCES

[1] C. Collaboration, S. Chatrchyan, G. Hmayakyan, V. Khachatryan,
A. Sirunyan, W. Adam, T. Bauer, T. Bergauer, H. Bergauer,
M. Dragicevic et al., “The cms experiment at the cern lhc,” 2008.

[2] J. M. Tomczak and E. Wglarz-Tomczak, “Estimating kinetic con-
stants in the michaelis–menten model from one enzymatic assay
using approximate bayesian computation,” FEBS letters, vol. 593,
no. 19, pp. 2742–2750, 2019.

[3] D. J. Warne, A. Ebert, C. Drovandi, A. Mira, and K. Mengersen,
“Hindsight is 2020 vision: Characterisation of the global response
to the COVID-19 pandemic,” medRxiv, p. 2020.04.30.20085662, may
2020.

[4] A. Weyant, C. Schafer, and W. M. Wood-Vasey, “Likelihood-free
cosmological inference with type ia supernovae: approximate
bayesian computation for a complete treatment of uncertainty,”
The Astrophysical Journal, vol. 764, no. 2, p. 116, 2013.

[5] R. E. Sanderson, A. Wetzel, S. Loebman, S. Sharma, P. F. Hopkins,
S. Garrison-Kimmel, C.-A. Faucher-Giguère, D. Kereš, and
E. Quataert, “Synthetic gaia surveys from the fire cosmological
simulations of milky way-mass galaxies,” The Astrophysical Journal
Supplement Series, vol. 246, no. 1, p. 6, Jan 2020. [Online].
Available: http://dx.doi.org/10.3847/1538-4365/ab5b9d

[6] A. Kangasrääsiö, J. P. Jokinen, A. Oulasvirta, A. Howes, and
S. Kaski, “Parameter inference for computational cognitive mod-
els with approximate bayesian computation,” Cognitive Science,
vol. 43, no. 6, p. e12738, 2019.

[7] L. E. Calvet and V. Czellar, “Accurate methods for approximate
bayesian computation filtering,” Journal of Financial Econometrics,
vol. 13, no. 4, pp. 798–838, 2015.

[8] M. A. Beaumont, “Approximate bayesian computation in evolu-
tion and ecology,” Annual review of ecology, evolution, and systemat-
ics, vol. 41, pp. 379–406, 2010.

[9] M. Mondal, J. Bertranpetit, and O. Lao, “Approximate bayesian
computation with deep learning supports a third archaic intro-
gression in asia and oceania,” Nature communications, vol. 10, no. 1,
pp. 1–9, 2019.

[10] J. Liepe, P. Kirk, S. Filippi, T. Toni, C. P. Barnes, and M. P. Stumpf,
“A framework for parameter estimation and model selection from
experimental data in systems biology using approximate bayesian
computation,” Nature protocols, vol. 9, no. 2, pp. 439–456, 2014.

[11] G. Hamra, R. MacLehose, and D. Richardson, “Markov chain
monte carlo: an introduction for epidemiologists,” International
journal of epidemiology, vol. 42, no. 2, pp. 627–634, 2013.

[12] K. Cranmer, J. Brehmer, and G. Louppe, “The frontier of
simulation-based inference,” Proceedings of the National Academy
of Sciences, 2020. [Online]. Available: https://www.pnas.org/
content/early/2020/05/28/1912789117

[13] D. J. Warne and C. Drovandi, “covid19-auto-
reg-model (github repository),” 08 2020, https://
github.com/davidwarne/covid19-auto-reg-model/tree/
06f25ca5ca567d0795a72ebd411ec2f468cacc6b.

[14] S. Kulkarni, A. Tsyplikhin, M. M. Krell, and C. A. Moritz, “Acceler-
ating simulation-based inference with emerging ai hardware,” in
2020 International Conference on Rebooting Computing (ICRC), 2020,
pp. 126–132.

[15] S. Kulkarni, M. M. Krell, S. Nabarro, and C. A. Moritz, “Hardware-
accelerated simulation-based inference of stochastic epidemiology
models for covid-19,” 2020.

[16] D. T. Gillespie, “Approximate accelerated stochastic simulation of
chemically reacting systems,” The Journal of chemical physics, vol.
115, no. 4, pp. 1716–1733, 2001.

http://dx.doi.org/10.3847/1538-4365/ab5b9d
https://www.pnas.org/content/early/2020/05/28/1912789117
https://www.pnas.org/content/early/2020/05/28/1912789117
https://github.com/davidwarne/covid19-auto-reg-model/tree/06f25ca5ca567d0795a72ebd411ec2f468cacc6b
https://github.com/davidwarne/covid19-auto-reg-model/tree/06f25ca5ca567d0795a72ebd411ec2f468cacc6b
https://github.com/davidwarne/covid19-auto-reg-model/tree/06f25ca5ca567d0795a72ebd411ec2f468cacc6b

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MONTH 2021 14

[17] E. Dong, H. Du, and L. Gardner, An interactive web-based dashboard
to track COVID-19 in real time. Lancet Publishing Group, may
2020, vol. 20.

[18] M. Sunnåker, A. G. Busetto, E. Numminen, J. Corander, M. Foll,
and C. Dessimoz, “Approximate bayesian computation,” PLOS
Computational Biology, vol. 9, no. 1, pp. 1–10, 01 2013. [Online].
Available: https://doi.org/10.1371/journal.pcbi.1002803

[19] C. C. Drovandi and A. N. Pettitt, “Estimation of Parameters
for Macroparasite Population Evolution Using Approximate
Bayesian Computation,” Biometrics, vol. 67, no. 1, pp. 225–233,
mar 2011. [Online]. Available: http://doi.wiley.com/10.1111/j.
1541-0420.2010.01410.x

[20] W. K. Hastings, “Monte Carlo sampling methods using
Markov chains and their applications,” Biometrika, vol. 57,
no. 1, pp. 97–109, 04 1970. [Online]. Available: https:
//doi.org/10.1093/biomet/57.1.97

[21] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”
2014.

[22] M. Liguori, S. Matarrese, and L. Moscardini, “High-resolution
simulations of non-gaussian cosmic microwave background maps
in spherical coordinates,” The Astrophysical Journal, vol. 597, no. 1,
p. 57, 2003.

Sourabh Kulkarni is currently a research assis-
tant in Nanofabrics and Nanoscale Cognitive Ar-
chitectures Lab in University of Massachusetts,
Amherst. He received the B.Tech. degree
in electronics and communication engineering
from the Rajarambapu Institute of Technology
(RIT), Maharashtra, India, and M.S.E.C.E. de-
gree from University of Massachusetts Amherst
in 2015 and 2017, respectively. He is currently
working toward the Ph.D. degree in electrical
and computer engineering at University of Mas-

sachusetts, Amherst. His research interests include simulation-based
inference, hardware achitectures for AI, deep probabilistic programming,
and ML systems for life science.

Csaba Andras Moritz received the Ph.D. de-
gree in computer systems from the Royal Insti-
tute of Technology, Stockholm, Sweden, in 1998.
From 1997 to 2000, he was a Research Scientist
with Laboratory for Computer Science, the Mas-
sachusetts Institute of Technology (MIT), Cam-
bridge. He has consulted for several technology
companies in Scandinavia and held industrial
positions ranging from CEO, to CTO, and to
founder. His company, BlueRISC Inc, develops
security microprocessors, hardware-assisted se-

curity and system assurance solutions for anti-tamper and cyber de-
fense. He is currently a Professor with the Department of Electrical and
Computer Engineering, University of Massachusetts, Amherst. His work
spans new models of computing and associated nanoscale integrated
circuits. His other interests are in cognitive cyber-security (bluerisc.com)
and privacy (eprivo.com).

https://doi.org/10.1371/journal.pcbi.1002803
http://doi.wiley.com/10.1111/j.1541-0420.2010.01410.x
http://doi.wiley.com/10.1111/j.1541-0420.2010.01410.x
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.1093/biomet/57.1.97

	1 Introduction
	2 Background
	2.1 Mathematical Notations for Statistical Inference
	2.2 Stochastic Epidemiology Model for COVID-19
	2.3 Approximate Bayesian Computation
	2.4 ABC with Sequential Monte Carlo
	2.4.1 MCMC Step Size Tuning and Perturbations

	3 Design
	3.1 Parallel ABC-SMC with MCMC Tuned Step-Size
	3.2 Parallel ABC-SMC with Beta Distributed Step-Sizes
	3.2.1 Exploration and Exploitation in the Massively Parallel Regime
	3.2.2 Beta-Distributed Step-Sizes
	3.2.3 Tuning the Beta Step-Size Distribution

	3.3 Theoretical Correctness and Convergence Guarantees for ABC-SMC

	4 Experiments and Results
	4.1 Performance Comparison
	4.1.1 Experiment Setup
	4.1.2 Results

	4.2 Comparing Predictive Simulations from Learned Parameters
	4.2.1 Experiment Setup
	4.2.2 Results

	4.3 Runtime Comparison

	5 Discussion and Conclusion
	5.1 Effectiveness of the Proposed Algorithm in Massively Parallel Regime
	5.2 Wider Applicability of Proposed Algorithm

	References
	Biographies
	Sourabh Kulkarni
	Csaba Andras Moritz

