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ABSTRACT 

Artificial Intelligence is becoming ubiquitous in products and services that we use daily. Although the domain 

of AI has seen substantial improvements over recent years, its effectiveness is limited by the capabilities of 

current computing technology.  Recently, there have been several architectural innovations for AI using 

emerging nanotechnology. These architectures implement mathematical computations of AI with circuits that 

utilize physical behavior of nanodevices purpose-built for such computations. This approach leads to a much 

greater efficiency vs. software algorithms running on von-Neumann processors or CMOS architectures which 

emulate the operations with transistor circuits. In this paper, we provide a comprehensive survey of these 

architectural directions and categorize them based on their contributions. Furthermore, we discuss the 

potential offered by these directions with real world examples. We also discuss major challenges and 

opportunities in this field. 
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1 Introduction 

Artificial Intelligence (AI) has shown great promise in an ever-increasing number of applications such as 

self-driving cars[1][2][3], natural language processing[4][5][6], computer vision[7][8], personalized 

medicine [9][10] and many more.   

There are a variety of AI models currently deployed in the real-world applications.  These models are inspired 

by progress in number of domains such as neuroscience, calculus, probability theory and statistical analysis. 

Currently, the most prevalent approaches of AI used in practice are Neural Network models (NNMs) and 

Probabilistic Graphical Models (PGMs). Real-life applications set a lot of constraints on AI models. For 

example, genetic networks require the use of billions of parameters to model genetic information. 

Furthermore, self-driving cars are required to take decisions in real-time which puts pressure on the 

performance they need to reach. In addition to this, cybersecurity and other applications would benefit from 

learning in real-time. Emergence of IOT devices and appliances push for the development of very low-cost, 

power- efficient solutions. The breakthrough in AI has been enabled not only by the advancement in 

algorithms but also by the use of tensor-compute based software systems accelerated by GPUs [11]. However, 

even systems powered by GPUs, run into resource constraints [6] and require several weeks for learning 

while consuming large amounts of power[16].   More recently, custom hardware solutions such as based on 

FPGAs [15][16][17] and ASICs [18][19][20][21][22][23] have been designed. FPGA and ASIC-based 

implementations are not as versatile as software approaches; however, they are tailored to achieve best results 

for a given model or a few models at the most. When compared with GPUs, FPGA-based implementations 

are up to an order of magnitude better in energy efficiency and marginally better in performance-per-watt 

[16]. Similarly, ASIC-based approaches achieve up to two orders of magnitude better power efficiency and 
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performance [18] vs. GPU based systems. As we shall discover in this survey, even though these systems 

indicate great progress, a lot of scope remains for improvements on all key facets, beyond GPU/FPGA/ASIC 

directions.    

Conventional approaches for AI models, even the hardware-based directions, are inefficient because they 

rely on several layers of abstraction. In comparison, new directions with emerging technology can often 

bypass these layers by directly implementing the conceptual computational frameworks of AI in the physical 

layer. We refer to these directions as ‘Emerging Nanotechnology-Enabled AI’(ENAI). There are a variety of 

nanodevices that provide new capabilities towards AI. These include in-memory computing enabled by 

unique related computational behavior [24] as well as implementing neurobiological functionalities [25]. 

Examples of specific useful nanodevice capabilities include fast and low energy switching between multiple 

analog states [26], persistent storage, inherent stochasticity, oscillatory behavior, and directly implementing 

Hebbian learning. At circuit and architectural levels, research is geared towards realizing AI models using 

new emerging technologies without layers of abstractions directly emphasizing the underlying device 

principles. 

There have been several survey papers which review use of emerging technology for neuromorphic and 

neural network architectures and frameworks [27][28][29]. There has not been, to the best of our knowledge, 

works which encapsulates the broader field of AI which not only includes neural network and related models 

but also statistical and probabilistic graphical models. Furthermore, these surveys are typically limited in 

scope for the devices they cover. This survey aims to be broader in both aspects, where the wider scope of 

AI is captured along with a broader gamut of nanodevices.  

 In this paper, we identify four key ENAI related directions: i) Circuit-level-focused works not yet reaching 

architectural scale; ii) Architectures combining CMOS technology with nanodevice-enabled unique 

functionality; iii) Novel architectures that utilize multiple/diverse nanodevice capabilities to achieve ENAI 

with minimal CMOS support; iv) Related integrated circuit technologies to efficiently realize aforementioned 

directions (e.g., the same way as CMOS and associated material stack enabled the large-volume production 

of digital systems in the past). These approaches are described briefly below and will be discussed in detail 

in later sections.  

Key Computational Circuits for ENAI: Prior to designing complete architectures for ENAI, key 

computational circuit blocks need to be identified and designed. For example, in NNMs, major computational 

blocks include synaptic weight and neuron circuits whereas in case of PGMs, it could be conditional 

probability tables and belief update units etc. These works may entirely rely on computer simulations, vs. 

actual prototyping, using device models or, in some cases, even fabricate actual circuits. Since the focus is 

on demonstrations of key functionalities, these latter directions usually rely on computer-aided test equipment 

and software for signal conditioning, I-V characterization, testing, process monitoring, analysis of results etc.  

Nanodevice-aware Architectures for ENAI: This category encompasses works that design complete 

architectures for ENAI by augmenting CMOS technology with emerging nanotechnology. This involves 

often building on the contributions by the works in previous category. These works may simply assume that 

some CMOS integration is available. For example, magnetic devices and memristors may be compatible at 

the material-system level with current CMOS manufacturing, although the integration in efficient ways is 

still an open question. This integration is in fact the research target for the fourth category of papers.   

Toward All-nanodevice ENAI Architectures: Designing computational circuits for AI involves substantial 

complexity. Circuit design efforts in this category aim to collapse this complexity using mostly emerging 

nanodevices. This involves engineering new nanodevice properties that could be directly utilized for AI 

computations. Devices exhibiting spiking behavior for neuronal dynamics, plasticity for Hebbian learning, 

stochasticity for encoding probability distributions are some of the directions pursued.  

Integrated Circuit Technology for ENAI: Research focusing on transformative ways to provide an integrated 

solution for all technology aspects (device, structural features, materials, circuit styles/components) 

specifically designed for AI. These technologies have features that are architected to solve issues such as 
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connectivity, manufacturability, 3D integration, material stacks, integration with CMOS subsystems, etc. 

Collectively these are referred to as ‘ENAI fabrics’. 

1.1 Structure of the Survey 

The paper is organized as follows: Section II provides a brief overview of the prevalent AI models as well as 

various nanodevices employed; Sections III-V covers the three major approaches in ENAI and discusses 

most representative research efforts; Section VI covers the emerging ENAI fabrics development efforts; 

Section VII includes comparative analysis, additional discussions and conclusion. 

2 Background 

The domain of ENAI extends into various other domains of expertise and its discussions will involve various 

terminologies. In a broad sense, ENAI approaches enable the key AI models, and utilize key device and 

circuit properties in doing so. This section provides some preliminary background knowledge on AI models 

and nanodevices to facilitate discussions in later sections. 

2.1 AI Models 

 The ever-increasing success of AI is, to a great extent, related to the development of various AI models. 

These models and their mathematical frameworks have been worked upon over the last century and they 

continue to be worked upon today. The two major functions associated with AI models is learning them and 

performing inference on them. Learning, also called training, is a process of optimizing model parameters 

from data while inference refers to using learned models to predict missing values or future outcomes from 

new observations. Throughout this survey, training and learning will be used interchangeably. We briefly 

discuss the prevalent AI models, a majority of which can be categorized into neural network models and 

probabilistic graphical models, which the paper focuses on (see Figure 1). 

 

Fig.  1. The ‘Map’ of AI Models. Majority of AI models can be categorized as either NNMs, PGMs or hybrids 

thereof. This survey shall focus on architectures that are based on these models. While many within the AI community 

consider NNs and PGMs to be subfields of Machine Learning (ML), which by itself is a subfield of AI; here we place 

them directly under AI as these aforementioned distinctions are becoming quite blurry these days. While there are 

AI models outside these two general paradigms, there is not much work in ENAI regarding them. 
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2.1.1 Neural Network Models (NNMs) 

NNM is an AI computing framework that can learn to perform classification and clustering tasks by learning 

features of the data. At the core, NNMs consist of large number of simple processing units called as neurons 

that are densely interconnected in layers. The information coming into these neurons are weighted 

(multiplied) by synaptic weights. Multiply-accumulate operation between the inputs and synaptic weights is 

the most dominant computation in the NNM graph. Networks which have a distinct training and inference 

phase are called static networks while networks that continue to evolve during the inference phase are 

dynamical networks. Significant part of the training phase is used for evolving the synaptic weights in NNMs 

while rest of the time is used for optimizing the so-called hyper parameters such as number of layers, learning 

rate, number of training epochs etc. Deep learning (DL) refers to NNs with large number of layers.  

NNs can be classified based on neuron functionality, connectivity type, learning algorithms, type of signal 

integration, applications etc. In multi-layer feedforward networks, the neurons and synapses are connected 

in a strictly forward fashion whereas recurrent networks have feedback loops. Convolutional neural networks 

(CNNs) are deep, feedforward neural networks with convolutional filters that are specially tailored for 

computer vision applications [30]. Recurrent neural networks (RNNs) have feedback connections which 

allows for a temporal dynamic behavior. Another major class of neural networks called Spiking Neural 

Networks (SNNs) use spikes (all or nothing signals) unlike DNNs which output real numbers. The 

information is encoded into timing and frequency of spikes of neurons. Some SNNs use bio-realistic models 

of neurons. These systems are strictly dynamic in nature since learning is integral part of these models. 

Generative models like Autoencoders and Deep Belief Networks (DBNs) model joint probability 

distributions of inputs and outputs to extract deep hierarchical representation of the data. Generative 

Adversarial Networks (GANs) consist of two neural networks contesting to fool each other. 

The two major learning paradigms for NNMs are Supervised and Unsupervised learning. Supervised learning 

is a learning paradigm that maps inputs to outputs based on the example input-output pairs of training data. 

Backpropagation is the mostly commonly used supervised learning algorithm for NNs in which synaptic 

weights are incrementally updated by calculating the gradients with respect to a loss function [31]. 

Unsupervised learning algorithms, which are mostly local in nature, find underlying structure of data and are 

useful when the data is unlabeled. Some examples of unsupervised learning algorithms are Hebbian learning 

[32] and its variants like competitive learning [33], Spike-Timing Dependent Plasticity (STDP) [34] etc. 

CNNs are tailored for computer vision applications while RNNs are used for signal processing/speech 

recognition, captioning systems, etc. SNNs have been used in various vision applications, but they are most 

popular in neuroscience applications. Autoencoders and DBNs are used for generative learning, image 

processing/denoising and generating new images.     

2.1.2 Probabilistic Graphical Models (PGMs) 

PGMs are graph-based representations which encode joint probability distributions over a set of random 

variables. The random variables are represented as nodes and relationships between them are represented by 

edges. Directed edges may encode causal relationships, while undirected edges represent non-causal 

dependencies. The graph is a compact representation of the joint probability distribution among the random 

variables. PGMs can be broadly classified into two types based on whether the edges of the graph are directed 

or undirected. Directed graphs consists of Bayesian Networks (BNs) while undirected graphs consist of 

Markov Networks (also known as Markov Random Fields or MRFs) and Boltzmann Machines. This allows 

these models to capture fundamentally different relationships between variables and hence used in modelling 

different phenomena. While being representationally different, they share the probability arithmetic involved 

in the inference and learning process.  

Learning of PGMs has two aspects - learning the structure of the graph and learning the parameters. Learning 

the structure of PGMs in NP-Complete [36] and is usually done via search-optimization techniques that 

minimize an objective function, typically KL divergence [37] or Evidence Lower Bound [35] and is an area 

of active research. Learning parameters is NP-hard [38] and is done through one of these popular techniques 

- maximum likelihood estimate, maximum a posteriori estimate, expectation maximization, contrastive 
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divergence, variational learning and Bayesian update. Majority of structure learning algorithms are 

unsupervised while parameter learning algorithms tend to be supervised or semi-supervised.  

Inference in PGMs can be performed in an exact fashion with analytical techniques, or, approximately, 

through sampling-based or variational techniques. For exact inference, algorithms like Pearl’s Belief 

Propagation in BNs and sum-product message passing algorithm in MRFs and RBMs are used [39]. For 

approximate inference, algorithms ‘sample’ – or extract points from – the probability distribution of the 

PGMs to perform inference. These techniques tend to converge to exact results with increasing number of 

samples. Few widely used algorithms are Gibbs’ Sampling [40], Metropolis-Hastings algorithm [41] and 

several others, which together belong to the family of Markov-Chain Monte Carlo (MCMC) methods. 

2.2 Emerging Nanotechnology  

 Another important aspect of ENAI are the various nanodevices which, through their physical characteristics 

such as electrical, magnetic, and optical behavior, provide strong foundations to the design and development 

of ENAI and associated circuit directions. We provide a brief technology primer regarding these nanodevices, 

which differ greatly in their properties and materials used, and are broadly categorized into the following 

device types: memristive, magnetoelectric, nanophotonic and emerging three-terminal devices.  

2.2.1 Memristive Devices 

Memristive devices are two-terminal passive nanoscale devices with pinched hysteresis voltage/current 

characteristics. The internal state (resistance/conductance) is determined by the history of applied voltage 

and current. They have a simple metal/insulator/metal stack (see Figure 1a). Because of their unique physical 

properties, fast and low energy switching, scalability, conductance modulation, they are one of the most 

promising technologies for ENAI. Memristive devices can be categorized based on their operating 

mechanism, physical properties, type of materials used etc. Based on filament rupture mechanism, there are 

two types of memristive devices namely drift memristors [42] and diffusive memristors [43] (see Figures 1a 

and 2a; based on type of switching material, the two main types are OxRAM and CBRAM; based on 

switching dynamics, they can be classified into linear and non-linear memristors devices.   Figure 1a and 1b 

shows the memristive device stack and typical characteristic graphs. There are mainly two modes of 

operation, read mode and write mode. During the read mode, the conductances are sensed without disturbing 

their state, while during the write mode, the conductance is programmed by applying a voltage greater than 

the threshold of the device. The read and write voltages are encoded as pulse trains.  

 Phase-change memory (PCM) devices [47] are one of the more ‘mature’ emerging devices to date. 

They are often put under the ‘memristive devices’ category because they possess similar properties as 

 

Fig.  2. Emerging nanodevices and their characteristics: (a) Drift Memristor; (b) Diffusive Memristor; (c) Phase-change 

Memory; (d) Magnetic Tunneling Junction; (e) Magnetic Domain-wall device; and (f) Single-photon Avalanche 

Detector 
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memristors. A thin layer of phase change material and insulator are sandwiched between two metal 

electrodes. They are simple two-terminal passive devices that utilize the phase transitions of materials to 

effect resistivity changes in devices. The phase transitions are from crystalline (low resistivity) to amorphous 

(high resistivity) phases. The conductance changes are affected through voltage/current pulses. Figure 1c 

shows a typical PCM device stack and its characteristic graph.   

2.2.2 Magnetoelectric Devices 

Magnetoelectric devices (see Figures 1d and 1e) are characterized by a multi-layer stack of magnetic 

materials and insulators. They operate on the principle of the (mis)alignment in the polarization of electronic 

spin in different metal layers separated by the insulating layer; if they are aligned, the device presents lower 

resistance, else the resistance is a function of the degree of (mis)alignment. The devices are programmed 

with one of two major methods: devices with three terminals are controlled by voltage applied to third 

terminal, which directly changes the polarization state. Devices with two terminals are programmed by use 

of spin-orbit currents, which apply spin-orbit torque on the material to change their polarization. 

Magnetic Tunneling Junctions (MTJs):  This family of devices typically consists of two magnetic layers 

separated with an insulator (see figure1d). One layer is permanently magnetized in a fixed axis. The other 

layer’s magnetization is adjusted with various techniques to achieve different resistance values. MTJ devices 

can be both volatile and non-volatile. These devices have key properties such as very low power 

consumption, sub-nanosecond switching times, and non-volatility which make them ideal for use in several 

NEAI approaches. Some types of MTJs, based on their operating principles, are Straintronic MTJ [48], Spin-

Transfer-Torque(STT) MTJ[50], Perpendicular Magnetic Anisotropy(PMA) MTJ [51], etc. Spin Torque 

Oscillators (STOs): This family of devices utilize the phenomenon of spin torque to generate controlled 

oscillations. The phenomenon of spin torque leads to oscillatory variation in the resistance of the device. 

These unique properties make them good candidates for applications that require nanoscale oscillators, such 

as oscillatory neural network architectures discussed in section 5.1.1. Some examples of STOs, typically 

named after their operating principle, are STT-STO [52], Giant Magnetoresistance(GMR) STO [53], 

Tunneling Magnetoresistance(TMR) STO [54] etc. 

Domain Wall Devices (DWs): These devices utilize the existence of more than one domain of magnetization 

within the same ferromagnetic bulk. The boundary at which the various domains intersect is known as a 

domain wall (see figure 1e). This interface is usually mobile and can be moved by application of spin torque 

currents (J). Changing the position of domain wall changes the impedance provided by the device, and the 

domain wall position is static absent external sources.  Applications of these devices include contiguous non-

volatile memory, as synaptic elements in neuromorphic architectures, etc. Some examples of DW devices 

are Anti-Ferromagnetic DWs [55], and the skyrmion-motion based racetrack memories [56]. 

2.2.3 Nanophotonic Devices 

These are devices that perform non-linear operations on light. Few examples which have been used in ENAI 

systems are Quantum-Dot LEDs (QD-LEDs) [57] and Single Photon Avalanche Detectors (SPAD, see 

figure1 f) [58][59]. The linear operations in optical domain can be done by use of passive elements like 

lenses. The optical devices allow for manipulations in all the properties of light – wavelength, frequency, 

phase and amplitude, which provides them with a rich representational framework. The devices are 

programmed mainly by application of a bias voltage. This bias voltage modifies the sensitivity of the non-

linearity of the devices. These unique properties are useful in optical AI architectures (see section 5.2). 

2.2.4 Multi-terminal Devices 

In this category, some of the nanodevices with more than two-terminals that were not listed earlier are 

included. While two-terminal devices have the advantages such as simplicity in terms of connectivity, small 

footprint, multi-terminal devices provide more control over the conduction modulation mechanism and offer 

more degrees of freedom enabling more complex behavior. Some of the devices are MoS2 FETs [60], Carbon 

Nanotube transistors (CNTs) [61], Nanoparticle organic memory field-effect transistors (NOMFETs) [62], 

Organic electrochemical transistors (OECTs) [63], Ferroelectric FETs (FeFETs) [64][65], Stochastic 

NMOS[66]. 
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3 Computational circuits for ENAI 

These efforts are aimed at demonstrating fundamental aspects when designing architectures for AI using 

emerging nanotechnology. Hence, the focus is to demonstrate key computations of AI models using 

nanodevices rather than architecting a full-fledged system for AI from scratch. The works reviewed here 

address issues in one or more levels in the design hierarchy.  

Vector matrix multiplication (VMM) aka vector dot-product is one of the most dominant computations in 

many AI models. Nanodevices arranged in a crossbar architecture can efficiently compute VMM operations 

by harnessing electrical properties governed by Ohm’s and Kirchhoff’s laws. This provides a scalable and 

compact way to realize ENAI. Typically, the VMM operation takes place between the input features (encoded 

as voltages/currents) and the parameters (encoded by physical property such as conductance, spin torque etc.) 

to produce outputs (voltages/currents) that subsequent modules can use for further processing. Some of the 

 

Fig.  3. (a) Example of a CNN architecture using  memristor crossbars; Neurons mapped onto tiles which are 

connected with an on-chip c-mesh; vector-matrix multiplication using memristor crossbar [107]; and (b) Example of 

a BN architecture based on MTJs[115]; Structure of BN directly mapped onto reconfigurable fabric, probabilistic 

inference enabled by MTJ composer circuits. 

 

Table 1. Summary of demonstrated nanodevice sizes 

Nanodevices Smallest feature size demonstrated 

Memristors 6 nm half-pitch and 2 nm critical dimension [44] 

Phase Change Memory Sub-10nm switching material thickness [45] 

MTJ 14nm device with 75nm free layer radius [49] 

Nanophotonic Devices 250nm spatial resolution of photon detection [59] 

Multi-terminal Devices 5 nm thick gate dielectric [46] 
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physical properties of nanodevices can be varied in a continuous manner due to which the parameters can be 

modified overtime to learn the models. The parameters can be learned either ex-situ or in-situ. In ex-situ 

learning, the parameters are learned all at once using computer software and later mapped onto the crossbar. 

In in-situ learning, the parameters are still learned on a computer software but updating of the parameters 

takes place in stages after each epoch of learning. Apart from this, some works focus on training algorithms 

for crossbar-based circuits to account for non-ideal device characteristics [67], switching dynamics [68][69], 

eliminate noise during updating [70] variability [71]. This section reviews some of the works which have 

focused on demonstrating crossbar circuits to accelerate certain key operations in AI models. The focus is on 

demonstrating key aspects of such computing as opposed to realizing a full-fledged architecture for AI 

models. 

Crossbars are used to design dot-product accelerators for neuromorphic and signal processing applications 

[72][73][74][75][76][77][78]. When synaptic weights of a neural network are mapped onto large crossbar 

arrays, all computations within a layer can be performed in a single step parallelly, thus achieving significant 

acceleration. Several works have focused on experimental demonstration of using crossbars for neural 

networks. Since the focus of these works is on demonstrating computations using nanodevice arrays, 

important peripheral functionalities like activation function, training etc. are implemented using external 

electronics or external computer running custom software. Many demonstrations involve showing fully 

connected multilayer perceptron network to do basic pattern classification [79][80][81]. Recently, recurrent 

neural networks such as LSTMs [82], Hopfield Networks [83] have also been demonstrated. While most of 

works mentioned above use ex-situ learning, few have demonstrated in-situ learning [84].      

There has been work in use of crossbar architectures in enabling certain sub-class of probabilistic models 

with several architectural similarities to MLP NN models. In such models, namely Restricted Boltzmann 

Machines (RBM) and Deep Belief Networks (DGNs), while the computations in learning and inference 

operations are based on probability arithmetic, the architecture consists of a fixed layer-by-layer structure 

Table 2. Summary of key demonstrations of core functionalities for enabling AI 

Papers AI models Device type Key demonstrations Key Results 

Suri et al. [86] RBM Memristor  Crossbar Circuit of OxRAM devices device endurance: ~140 million cycles 

Augustine et 

al.[95] 

Generic STT MTJ variability-aware device simulations Device choice depending on application 

type 

Kim et al.[67] DNN Memristor DNN framework for non-ideal IV No dependency of accuracy on 

nonlinearity 

Kataeva et 

al.[68] 

FFN Memristor Modified backpropagation algorithm  State-of--the-art miss rate 

Miao Hu et 

al.[72] 

FFN Memristor Exp. demonstration of crossbar array 

of size 128 x 64  

~90% accuracy with 6 bits precision 

Preziozo et 

al[79] 

FFN Memristor Exp. demo of ANN on a small 

crossbar network and in-situ training 

100% classification accuracy for binary 

images 

Burr et al.[80] FFN PCM Exp. demo of large-scale ANN with 

PCM as synaptic weights 

High classification accuracy of 82.2% 

Li et al.[82] LSTM Memristor Exp. demo of core part of LSTMs 

using crossbar circuits 

Demonstration of classification and 

regression 

L. Gao, et al[83] CNN Memristor Demonstration of convolution kernel 

operation on resistive cross-point 

array 

Experimental demonstration of kernel 

operations for edge detection 
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and operations resemble the multiply-accumulate operations of NNs. For this reason, most nanoscale 

implementations for RBMs and DBNs follow the crossbar architecture [86], the cross points encoding 

conditional probabilities instead of weights. Most approaches use memristor crossbar circuits, while a 

considerable few use MTJs. As with the NN approaches, these architectures share design similarities with 

CMOS-only architectural counterparts while mainly differing in their use of memristive or MTJ crossbars 

for multiply accumulate computations. The value proposition for these works lies in the fact that they provide 

experimental demonstration of various aspects related to crossbar-based computing. 

4 Nanodevice-aware Architectures for AI 

Re-evaluating the utility of nanodevices from being an efficient way to off-load some compute operation to 

being critical foundations to complete AI models leads to the emergence of these architectures. These are 

designed with tight integration of nanoscale devices and conventional CMOS and typically provide complete 

architectural support of AI models. The focus of these architectures is to best utilize the nanodevice properties 

for efficient implementations while designing architectures that are as close to the mathematical framework 

of their AI models as possible. The architectures are characterized with a hierarchical approach, with device-

circuit-architecture co-design. Most of these works use simulations to showcase their work as often most of 

the technology aspects are proven by works reviewed in the previous sections. 

Subsequent subsections will discuss these architectures in order of increasing functionality that they support. 

While some architectures support only inference or only learning over AI models, others support both.   

4.1 Inference Engines  

In this section, we focus on design of high-performance inference engines. Here, architectures implement 

inference algorithms using arithmetic circuits using nanodevices. Typically, nanodevice arrays are used for 

both storing as well as computing (compute-in-memory) on parameters of the AI models. Most often, these 

arrays are integrated on top of CMOS which provides support for other important functionalities such as 

activation function, sampling circuitry, signal restoration, timing and control circuitry, parameter update 

circuitry etc. Since the focus is on inference in these architectures, parameters are optimized externally (ex-

situ) and then imported using parameter update circuits. Consequently, these systems are mainly geared 

towards providing support for static ‘pre-trained’ models.  Hence, any training algorithm can be used to learn 

the synaptic weights which makes these architectures more versatile. This subsection is organized in two 

parts – architectures that enable inference in NNMs and ones which enable inference in PGMs.  

4.1.1 Neural-Network Architectures 

Several works have implemented mixed-signal inference engines for multi-layer feedforward neural 

networks and recurrent networks using memristive devices and phase change devices crossbar arrays.  Weight 

matrices are mapped to the crossbar in case of MLP networks [99][100][101] while kernel filters are mapped 

in case of CNNs [102][103]. In case of CNNs, many techniques have been proposed to map the kernels to 

the crossbars. Additionally, spin-device-based convolution accelerators are also proposed [104] CMOS 

technology is used to implement the neuron and programming circuitries. Additionally, feedforward 

networks have been used to implement auto-associative memory [105]. [107] proposed a full-fledged mixed-

signal memristor-based accelerator for deep learning. Memristor crossbars are used for storage and analog 

processing. It implements a tile-based pipeline architecture with each tile containing nanodevice-based 

multiply-accumulate units, CMOS-based activation function units and ADC units etc. Tiles are connected in 

a mesh network to provide full connectivity (see Figure 3). [108] proposes a novel architecture to implement 

machine learning algorithms. Memristors are used to implement CAM units to implement associative storage 

and processing. [109] proposes a memristor-based processing-in-memory (PIM) architecture to accelerate 

NN applications. It also proposes a software/hardware interface so that software developers can compile NN 

code to run on their accelerator. Recently, nanodevice-based computing-in-memory (CIM) chips have been 

proposed to realize large-scale NNMs [110][111]. These works aim to reduce the latency of multi-bit MAC 
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operations, improve accuracy of CNNs. To estimate and optimize performance of these memristor-based 

accelerators, several behavioral simulators have also been proposed [112][113].     

4.1.2 Probabilistic Graphical Model Architectures 

Several of these Architectures are focused on implementing PGMs, and typically consist of computational 

cells implementing a node of the graphical model and reconfigurable switchboxes to enable arbitrary 

connectivity. The computational cells contain the circuits required to perform the learning and inference 

operations for each node. These architectures follow as dataflow approach with asynchronous compute in 

each cell initialized by an update in their inputs. The node parameters are located within the cells in non-

volatile memories, and circuits operate on these parameters and the inputs to update the node state. We shall 

now discuss these major architectural principles, as well as the benefits and challenges of the architectures 

that are representative of this approach. 

At the higher level the architecture frameworks in this approach [114][115][116][117] tend to follow the 

design methodology of a uniform reconfigurable fabric. They consist of computational units(e.g., Bayesian 

Memory [114], Bayesian Cell [115][116][117]) augmented by programmable connectivity circuits. These 

architectures are primarily inference engines that implement the Pearl’s belief propagation algorithm, while 

the structure and parameters of the BN model are learnt ex-situ (see, for example, Figure 3b). The belief 

propagation algorithm works by independent operations in each cell and passage of probability messages 

between adjacent cells. This is a departure from traditional approaches where the computations pertaining to 

each cell would be ‘scheduled’ to be performed sequentially, one at a time in CPUs, many at a time in FPGAs 

[119][120][121]. 

The computational cells comprise of two main parts- the cell parameters (known as Conditional Probability 

Tables, or CPTs) and the computation circuits. The CPTs and computations circuits utilize the low-power, 

non-volatile devices (e.g. memristors [114],  MTJs [115]). The non-volatility of these devices allows for 

 

Fig.  4. (a) Fully connected neural network mapped into PCM arrays. Backpropagation algorithm which is a 

supervised learning algorithm is used to tune the weights[128]. (b) Spintronic Synapse with access transistors to 

decouple the programming and spike current paths to implement unsupervised STDP learning[131].  
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ultra-low-power storage; the co-location of computational circuits and storage mitigates any memory access 

latency. The computational circuits are designed to directly compute the mathematical operations involved 

in the belief propagation algorithm. The computations could be exact [114] [115][116] or approximate[117]. 

In some architectures, the devices perform the role of both memory storage as well as the computation circuit. 

Some architectures involve design of optimized probability encoding schemes using the nanodevices that 

benefit from the low precision requirements of PGM applications [115][116], while others have designed 

probability encoding circuits that provide scalable precision [117]. 

These architectures are evaluated from circuit level all the way up to application level. The various innovative 

designs, optimizations at circuit and architectural level, as well as the low-power nonvolatile devices together 

result in significant gains over conventional approaches. Power-performance benefits of up to 5 orders of 

magnitude are reported compared to traditional approaches like software implementation on 100-core 

processors [115] and two orders of magnitude over ASIC implementations using conventional devices[119].  

4.2 Architectures with Support for Learning  

Training is the most computationally expensive aspect in any AI model. AI models implemented using 

conventional technology with multiple GPUs require power in the order of several 100s to 1000s watts of 

power for training [122]. Since nanodevices enable in-memory computing meaning computations often take 

place at the location of the synaptic weight storage. Hence training AI models implemented using 

nanodevices can be significantly faster. Nanodevices are scalable, provide fast and low power switching 

dynamics which is a crucial aspect for implementing learning systems. The techniques how these parameters 

are tuned depend on the type of AI model, type of learning technique, etc. The central idea is to tune the 

physical properties of the nanodevices (conductances, magnetoresistance etc.) which implement the free 

parameters of the AI models. These characteristics are ideal for supporting learning in technologies that 

implement AI models. Owing to these benefits of employing nanodevices, several works have focused on 

designing architectures/circuits to support learning. This next subsection reviews several works which are 

aimed at providing learning support for AI models.  

4.2.1 Supervised Learning 

The overarching motivation for these works is to design compact learning cells while still maintaining high 

accuracy for training. AI models are often trained using a popular supervised training algorithm known as 

backpropagation. It involves propagating errors backward through the network layers to update the weights 

based on gradient descent. Hence, it involves a lot of complicated computations and caching of intermediate 

data. There are several challenges when designing custom hardware learning frameworks using emerging 

technology for AI. Since implementing a fully-fledged backpropagation algorithm in hardware is expensive, 

it is modified so that custom hardware using CMOS technology can be employed. Several works have 

proposed acceleration frameworks for providing supervised learning support to multilayer feedforward 

neural networks [123][124][125][126][127][128][129]. Better yet, some works have proposed learning cells 

using emerging technology which are compact and consume less power than CMOS hardware. If the 

framework is mixed signal, caching of analog signals is a problem. [130] implements clever caching 

techniques to store intermediate results. Tuning process for nanodevices is complicated, time consuming and 

may require a lot of hardware resources. 

4.2.2 Unsupervised Learning 

Several AI models such as Spiking neural networks, Gaussian Mixture Models, etc. use unsupervised learning 

algorithms such as Hebbian learning, spike timing dependent plasticity (STDP), Expectation-Maximization, 

Bayesian Inference, Contrastive Divergence etc. for updating the weights. These algorithms sometimes draw 

their inspiration from specific aspects of how the brain implements learning and how this learning relates to 

Information-theoretic concepts.  Networks which implement unsupervised learning that make use of these 

algorithms are dynamical in nature, i.e., the model performs learning while performing inference, in contrast 

to supervised learning, where learning takes place beforehand. These learning algorithms are predominantly 

used in spiking neural networks and RBMs although other types of networks have also been shown to use 
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them. The continuous learning allows these models to adapt to changes in real-time making them flexible 

and robust. Since unsupervised algorithms are dynamical in nature, nanodevices which have low 

programming energy and fast switching characteristics are most suited.  

Works in this domain are digital or mixed-signal in nature, and primarily focus on demonstrating 

unsupervised learning using nanodevice-based circuits. [131] proposes a hybrid spintronic-CMOS SNN with 

on-chip unsupervised learning support. Low programming energy and fast programming of spintronic 

devices make them ideal to implement STDP learning. The digital architecture allows for reconfigurability 

which makes it flexible enough to implement a host of models. The weights are stored in analog fashion and 

converted to digital using ADCs. A digital pulse-width-modulation scheme is used to tune the memristive 

devices to implement learning using STDP [132]. A semi-supervised learning circuit framework for domain-

wall MTJ based neural network architectures is proposed [133]. A comprehensive memristor architecture 

Table 3. Summary of key Nanodevice-aware Architectures for AI 

Papers AI models Device type Key contribution  Results 

Yakopcic et al. 

[102] 

CNN Memristor Completely parallelized inference 

architecture for CNN 

High classification accuracy on MNIST 

dataset 

Yong Shim et 

al.[104] 

CNN Domain-wall  Hybrid spintronic-CMOS design 

for convolution computing 

~ 2.5 x lower energy vs CMOS-only 

implementation 

Xiaoxiao Liu et 

al.[105] 

ANN Memristor Reconfigurable architecture 

neuromorphic accelerator 

~ 2 orders performance, 2 orders energy 

vs. CPU 

Ali Shafiee et 

al.[107] 

CNN Memristor A full-fledged pipeline architecture 

for CNNs 

~ 1 order of magnitude over state-of-art 

previous ASIC implementation 

Ping Chi et 

al.[109] 

ANN Memristor NN accelerator with 

hardware/software interface 

~ 3 orders of magnitude performance, ~2 

orders energy 

Raqibul Hasan 

et al.[123] 

FFN  Memristor On-chip backpropagation training 

of crossbar arrays 

Energy efficient and compact neuro 

systems 

Djaafar Chabi 

et al.[124] 

FFN  Memristor compact learning cell design for 

high density integration 

acceleration of learning and high area 

density  

Daniel Soundry 

et al.[126] 

ANN Memristor Compact learning cell design for 

low-power learning 

2% and 8% of the area and static power 

compared to CMOS-only approaches 

Abhronil 

Sengupta et 

al.[131] 

SNN STT-MTJ architecture and circuits for learning 

using STT-MTJs 

SNN for MNIST digit recognition with ~ 

48fJ programming energy 

Zaveri et 

al.[114] 

BN Memristor Exploring CMOS/Nanoscale 

Integration in architectures 

Comparison of digital and mixed-signal 

architectures for BNs 

Khasanvis et 

al.[115] 

BN S-MTJ Circuit/Architecture design and 

large-scale evaluation 

~6000x power-performance benefit vs. 

100-core CPU 

Kulkarni et 

al.[117] 

BN S-MTJ Scalable-precision approximate 

Compute architecture 

~30x area reduction for high-precision 

applications 

Nasrin et 

al.[136] 

RBM STT-MTJ Stochastic Computing for online 

learning 

sub-picojoule energy per neuron operation 

Behin-Aien et 

al.[139] 

RBM/ 

BN/Ising 

MTJ belief unit' for building graphical 

model architectures 

simulated a BN application 

Bojnordi et 

al.[134] 

RBM Memristor Online leaning circuit/architecture 

design 

~100x performance vs. CMOS 
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that performs optimization and learning in RBMs through Bayesian implementation of contrastive divergence 

is proposed [134]. [135] proposes a similar learning framework, but with PCM devices and related support 

circuits. [136] introduces a learning and inference computational unit based on MTJs that the work proposes 

could be used in several PGM models such as BNs, RBMs and Ising models. The work supports several 

learning methods by mapping them into the contrastive divergence framework.  

Several works shown in this subsection, and more specifically [133][134][137][138][139] indicate, the 

various unsupervised learning methods implemented in hardware are algorithmically equivalent to each 

other. Given that some algorithms drive inspiration from the workings of the Brain while others are based on 

probability arithmetic and Bayesian statistics, their equivalence is of great importance in the design of 

architectures for AI models. This equivalence could lead to different model types being learnt using these 

generalized learning techniques, and further toward implementation of hybrid AI models such as Variational 

Autoencoders [140] and Bayesian Neural Networks [141] in future architectural design efforts.      

5 Toward All-nanodevice architectures for AI 

With the advancement of device development, several recent works focus on both the design of key 

functionalities and entire computational frameworks of AI models using only emerging and unconventional 

devices, with minimal, or in some cases, no CMOS circuitry partaking in the core functionality. This section 

is organized in two subsections – architectures focusing on key functionalities and architectures 

implementing all-nanodevice frameworks for AI. 

 

Fig.  5. Key functionalities with nanodevice circuits. (a) Coupled oscillation behavior in Spin-torque Oscillator 

device-based circuit[143]; (b) Stochastic behavior of MTJs when exposed to spin-orbit current[151]; (c) (left) 

Diffusion of Ca2+ in neuron cell membrane (right) Ag diffusion dynamics in diffusive memristor which demonstrates 

short-term synaptic plasticity [161]; and (d) Artificial neuron based on a phase-change device [173].  
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5.1  Architectures Enabling Key Functionalities with Nanodevice 

Circuits 

AI models typically consist of several mathematical operations. These operations could be of various forms 

and originate from various mathematical disciplines such as calculus, algebra, probability theory etc., and are 

typically computationally intensive. The distributed nature of AI models entails that these operations need to 

be performed at each node of the graph, further increasing the computational complexity for large 

applications. The complexity of these operations is evident in the large number of clock-cycles required in 

case of software implementations and the number of devices and circuit configurations in conventional 

hardware implementations. Research in material science and device physics has led to discoveries of a variety 

of nanodevices with a departure from the traditional ‘switching’ behavior of transistors. Through the process 

of design and fine-tuning of these devices, they are made capable of performing the complex mathematical 

operations intrinsically with little to no external circuits required. This section shall discuss the research 

directions which demonstrate the mathematical operations used in AI models enabled by novel nanodevice 

behavior. 

5.1.1 Coupled Oscillations 

These circuit designs attempt to model the coupled-oscillatory behavior of neuron spikes. The mathematical 

framework of coupled oscillatory systems and their use in machine learning applications is detailed in [142]. 

The circuit designs in this approach use nanodevices (mainly various devices in STO family) to obtain the 

mathematical framework of coupled oscillatory behavior in-circuit. The models obtained from these circuit 

styles are called oscillatory networks, or oscillatory neural networks. These circuit designs are shown to 

demonstrate operations like pattern recognition [143] and classification [144][145]. The coupled oscillator 

phenomenon allows for small number of coupled oscillators to perform comparably with larger traditional 

NNs (see Figa). 

The nano-oscillators along with their support circuits form a phase-locked loop (PLL). These PLLs are then 

connected to each other and initialized with random or preset frequencies or phases. The input is applied to 

the configuration of PLLs as frequency or phase perturbations through frequency-shift or phase-shift keying 

respectively. The PLL configurations get coupled and resonate with a certain frequency. The label in which 

in the inputs are classified is encoded in the resonant frequency.      

5.1.2 Distribution Sampling and Stochastic Behavior 

Approximate inference is widely used in PGMs for its simplicity and any-time nature. The core operation 

required in approximate inference is sampling from a distribution. When a PGM is evidenced upon a certain 

subset of its random variables, it forms a conditional probability table or distribution (CPT, CPD). Sampling 

is the process of obtaining sample values of the remaining random variables that correspond to this 

conditional distribution. There have been approaches to use memristive, magneto-electric 

[134][149][150][151][152][153][154] and nanophotonic [155][156][157][158] devices and circuits to 

encode and sample from distributions. The distributions that have been shown to be sampled from include 

both discrete (categorical) [150] and continuous (Bernoulli, exponential, Gaussian, uniform etc.,) [155][157] 

[156]. 

The circuit design in these approaches usually involves the design of ‘sampling units’ (e.g., Resonance 

Sampling Unit [155], Stochastic Bayesian Node [150]). These sampling units produce ‘samples’ in the 

following way: in the discrete case, each state of the random variable is sampled proportional to its probability 

as encoded in the CPT; in continuous case, a sample is produced from the distribution parameterized by the 

current CPD, such that a sufficiently large number of samples will resemble the CPD. These sampling units 

are then arranged in graphical structures and can perform independent sampling based on evidence obtained 

from neighboring nodes. 

These sampling processes, due to their use of device physics for sampling and their massive parallelism due 

to the use of distributed sampling units, are potentially orders of magnitude faster and more power efficient 

than software and conventional hardware approaches (see Fig5.b). 



 15 

5.1.3 Synaptic Dynamics 

Synapses are the fundamental entities of learning and memory in the biological brain. Spike timing based 

synaptic plasticity is widely believed to be the basic phenomenon behind learning and memory. This 

plasticity is achieved by the modulation of complex electrochemical activity in the synaptic clefts. Building 

circuits using conventional technology to emulate this complex electrochemical behavior is expensive. 

Table 4. Summary of key works toward All-Nanodevice Architectures for AI 

Paper AI models Device 

type 

Special property Results 

Nikonov et 

al.[143] 

Associative 

Network 

STO Coupled Nano-Oscillations Unsupervised pattern recognition 

with 64 oscillators 

Sengupta et 

al.[146] 

ONN STO Spin-based Neuronal Activation Sub-picojoule neuron activity vs. 

~700pJ CMOS neuron 

Kulkarni et 

al.[150] 

BN STT-MTJ Probabilistic switching of 

magnetization 

~86,000x speedup vs. software 

baseline 

Sutton et 

al.[151] 

Ising Model STT-MTJ Stochastic nano-magnetic 

behavior 

Demonstrate several NP-Hard 

problems using nanodevices 

Onizawa et 

al.[152] 

BN MTJ + 

Transistor 

Probabilistic behavior of 

composite device 

BN 'translated' to probabilistic 

logic for inference 

Zand et 

al.[154] 

DBN Sigmoidal 

STT-MTJ 

Sigmoidal behavior for 

neuronal activation 

4-layer DBN trained on MNIST 

with 97% accuracy 

Wang et 

al.[155] 

MRF QD-LED 

+ SPAD 

Resonance Energy Transfer 

Behavior for Gibbs sampling 

Image segmentation and motion 

estimation, ~40x speedup vs. GPU 

Blanche et 

al.[158] 

BN/MN QD-LED 

+ SPAD 

Optical behavior for emulating 

functions (log, exp, etc.) 

Demonstrated VMM, exp and log 

functions 

Mirzhai et 

al.[159] 

Basis Functions STO Population encoding in 

oscillatory networks 

Demonstrate brain-like auditory 

behavior 

Tuma et 

al.[173] 

SNN PCM Artificial stochastic neuron 

which models membrane 

potential  

Temporal integration in 

nanosecond timescale 

Torrejon et 

al.[144]  

ONN MTJ Nonlinear oscillators Ex demo oscillators to achieve 

spoken-digit recognition accuracy 

similar to that of neural networks 

Schnerider 

et al.[164] 

SNN JJ fast, low-power stochastic 

synapse 

Simulated a basic neuromorphic 

circuit with a neuron and synapse  

Wang et 

al.[161] 

SNN memristor Diffusive dynamics closely 

resembling influx and extrusion 

of calcium ions 

Ex demo of STP and LTP 

Pickett et 

al. [172] 

SNN memristor spiking behavior similar to HH 

axon 

Ex demo of spike trains and 

thresholding 

Sharad et 

al.[175] 

SNN STT-MTJ low-current, low-voltage, high 

speed switching for 

thresholding  

2 orders of magnitude low energy 

Sengupta et 

al.[166] 

STDP STT-MTJ STDP like behavior  pico-joule level energy 

consumption per synaptic event 
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Recently, emerging nanodevices with properties similar to biological synapses have been investigated. As 

nanodevices have low footprint and operate with very low power, synaptic implementations using these 

nanodevices achieve substantial reduction in complexity when compared to conventional technology. This 

section reviews works which use nanodevices to emulate fundamental aspects of synaptic behavior thus 

paving way for all-nanodevice architectures for AI.  

In [160], a nanoscale memristive synapse was demonstrated for the first time ever showing synaptic functions 

such as Spike Timing Dependent Plasticity (STDP). [161] developed a class of memristive devices called as 

diffusive memristors whose diffusive Ag-in-oxide dynamics closely resembled calcium dynamics in 

biological synapses. Biological learning and memory mechanisms such as STP, LTP, STDP were emulated 

with these devices paving way for more robust hardware implementations of neuromorphic functionalities 

(see Figure 4c). [162][163] reported a phase-change material-based synaptic element that mimics biological 

synapses such as synaptic learning rule using continuous resistance transitions in the material. [164] showed 

a synaptic emulator based on a dynamically reconfigurable low-energy JJ device capable of non-Hebbian 

learning. [165] demonstrated an inorganic synapse which emulates important synaptic functions such as STP 

and LTP. [166] demonstrated a spin-orbit torque-based device which implements STDP with pico-joule level 

energy consumption per synaptic event. Very recently, multi-terminal devices have been developed to 

emulate synaptic dynamics. [167] demonstrated an analog synapse learning to accelerate DNN training using 

three terminal devices.   

5.1.4 Neuronal Dynamics 

Artificial neurons are the fundamental building blocks of neural networks along with synapses. Neural 

functionality ranges from implementations which are inspired by biology to implementations which mimic 

biological counterparts. Neurons which are inspired by biology typically are simple in nature while the ones 

closer to biology typically exhibit complexity. The type of neuron functionality depends on the architecture 

of the neural network and application targeted. Some of the examples include Hodgkin-Huxley model [168], 

Integrate and Fire model [169], Hindmarsh-Rose model [170], McCulloch-Pitts model [171] etc. Since 

neurons exhibit complex functionality, implementing their behavior using software or CMOS systems proves 

to be very expensive in terms of performance, power, and area. In addition to this, seamless integration 

between synapses and neurons becomes a problem.  Hence, scalable realization of neurons is one of the 

fundamental challenges in realizing hardware systems for AI. Several nanodevices with device properties 

have been proposed in the past decade which exhibit many of the complex behaviors, if not all of them. In 

this section, we review some of the works which propose new devices which have the potential to replace 

large amount of associated complex circuitry. 

[172] proposes a Hodgkin-Huxley neuron using Mott memristors. [173] proposes a phase-change-device-

based integrate and fire neuron with stochastic dynamics. The device realizes many attributes like membrane 

potential stored in the form of phase configuration, phase transitions on a nanosecond timescale, stochastic 

phase transition etc. (see Figure 4d). [174] proposes a integrate and fire neuron using memcapacitors. [175] 

demonstrates a spin-torque-based neuron which mimics the analog summing and thresholding behavior with 

high energy efficiency. [176] demonstrates a domain-wall MTJ based neuron with leaky integrate and fire 

behavior. 
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5.2 Synergistic Device-Circuit-Architecture Design 

In this subsection, we discuss some approaches toward ENAI that involve an end-to-end design using 

nanodevices with minimal support from CMOS technology.  These systems are purpose-built from ground 

up to enable/accelerate specific AI models, and involve design of circuits using nanodevices special-purpose 

circuits and customized large-scale architectural features that synergistically work toward inference and 

learning operations of an AI model. These approaches are fewer in number than the previous two approaches 

and could be regarded as a second-generation of ENAI systems. In this subsection, we mention few such 

approaches which are representative of the work in related directions. [177] demonstrates an all-memristive 

SNN neuromorphic architecture with phase-change memristors for implementing the functionality of 

synapses and neurons.  [178] lays out a vision for an all-spin neural network architecture with various 

spintronic devices implementing neurons and synapses. In [159], an Oscillatory Population-Encoding 

Architecture is proposed for Sensorimotor Control: this work attempts to reconstruct the computational 

properties of a population of neurons encoding a non-linear basis function. They achieve this by designing a 

‘population’ of STO devices which are then tuned to learn a non-linear basis function defined as a mapping 

between input (injected) frequency and output (resonance) frequency. Although the work still contains 

CMOS support circuitry, it is merely peripheral, the core functionality for learning is completely spin-based. 

[179] lays out a vision for an all-photonic spiking neural network using a phase-change resonator. [158] 

envisions an all-photonic PGM architecture with individual nodes capable of performing sampling-based 

inference tasks using optical nanodevices. 

6 ENAI Technology fabrics 

This section focuses on works which aim to create next-generation integrated circuit technology for AI by 

incorporating novel nanodevices and their associated material stacks. A vast majority of the nanodevices are 

passive devices and hence cannot be used for implementing general purpose logic. Because of this, even all 

nanodevice architectures would need to rely on digital/analog CMOS logic circuits. In addition to this, there 

are other important aspects of IC technology such as circuit, placement and routing, thermal management, 

variability, manufacturing pathway etc. ENAI fabrics are aimed at solving most these aspects. These fabrics 

are the final logical step for realizing hardware systems for AI. Some works focus on integrating nanodevices 

with CMOS technology while others focus providing a complete solution for all technology needs. These are 

enabled by new fabrication procedures that allow for hybrid integration, 3D vertical integration of 

components to achieve connectivity, and manufacturability with minor changes to the existing fabrication 

processes. These fabrics and technologies provide a major step towards enabling broader assimilation of 

ENAI into the mainstream in the future. 

 

Fig. 6. All-nanodevice NEAI approaches. a) An all-MTJ system to automate learning process of robotic sensorimotor 

control using oscillatory circuits implementing non-linear basis functions[159]; b) Schematic illustration of an all-

memristive computational primitive. The neuronal membrane potential and the synaptic weights are emulated in the 

phase configuration of nanoscale phase-change devices[177]. 
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The most common implementation strategy is to do a nanodevice/CMOS hybrid integration. In these 

implementations, nanodevice crossbar arrays are complemented with conventional CMOS substrate through 

Back end of Line (BEOL) integration [131][180][181]. A 2D array of vias provides electrical connectivity 

between the CMOS and crossbar arrays. Since CMOS technology is very mature, these fabrics can rely on it 

for implementing key aspects of the design, peripheral circuitry and signal restoration. [182] proposed a new 

3D integrated ASIC technology for NNMs. Instead of using an incremental approach of stacking, it uses fine-

grained 3D connectivity between the nanodevices and transistors. Hence, it allows for 3D spatial distribution 

of synaptic weights and neurons and interconnect (see Figure 5). The ultimate vision of such fabrics is to 

cater to all aspects of IC technology for implementing AI.  

7 Discussion and conclusion 

We have reviewed the domain of artificial intelligence with emerging technology and divided the work 

according to their intellectual contribution. Emerging technology offers a lot of advantages over conventional 

technology for efficiently implementing architectures for AI. In this section, we discuss the potential of 

ENAI, key challenges and limitations that need to be overcome for it to become mainstream. 

7.1 Potential of ENAI 

Most works in ENAI discussed earlier include performance and power consumption analysis. These indicate 

anywhere between 2-4 orders of magnitude benefits vs. certain conventional reference designs. While these 

are useful as evidence for the potential for those specific works, they may not be as useful regarding 

demonstrating the capabilities of ENAI in general. Furthermore, it is important to extrapolate these individual 

results to the scale and constraints of future real-world workloads, which could provide a better point-of-

view for the impact of ENAI on the energy and performance scales associated with computational 

requirements of AI applications. To demonstrate this potential of ENAI, we design few workload scenarios 

that are representative of current and near-future computational needs of AI applications in both large-scale 

as well as low-power learning and inference tasks. We estimate the power and performance numbers for 

software/GPU approach with the FPGA/ASIC and ENAI approaches. The ENAI approaches are further 

divided into two versions – CMOS with ENAI acceleration and all-nanodevice ENAI with minimal CMOS 

circuitry. The former represents the short-term future architectures while the latter represent the more distant 

future architectures. In coming up with the estimates, we make certain assumptions. We assume linear 

scalability for numbers suggested in literature for scaling up from reported applications to the applications 

 

Fig. 4. 3D spatial distribution of synaptic weights and neuron in SkyNet fabric [182]. Fabrics purpose-

built for AI applications like these can spawn the next generation of ENAI.       
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we consider. Having made these assumptions, we report conservative numbers. To reach these numbers, we 

estimate the computational speed in operations-per-second and power as watts-per-operation as implied by 

the reported numbers in papers, and then scale them to the operations required by the applications listed 

below. 

7.1.1 Large-scale image recognition Training and Inference 

Computer vision is a domain that has seen great developments thanks to the advanced neural network 

architectures, especially convolutional networks. Development and widespread use of these models is 

dependent on the ability of rapid prototyping and learning from huge datasets. With growing use of this 

approach in mainstream, there is a substantial requirement of high-performance hardware solutions for newer 

and more demanding workloads. We consider a large-scale ImageNet [8] CNN with 60 million parameters, 

trained on 1.2 million examples from the ImageNet database. We have considered the current state-of-the-

art single Tesla v100 [12] (130 TFLOPS) GPU for the baseline. For ASIC metrics, we have considered the 

DaDianoNao architecture [106] which uses near data processing approach using eDRAMs for memory and 

digital CMOS for compute. The authors have reported their speedup and power savings vs. Nvidia K20M (3 

TFLOPS) GPU for the ImageNet model. Finally, we estimated the speedup and energy benefits of 

DaDianoNao as compared to Tesla v100. For ENAI, we consider ISAAC [107] which is a CNN accelerator 

which uses memristor crossbars for multiply accumulate operations and digital CMOS for neuron 

functionality. We chose this design because of two key reasons. First, this is one of the few full-fledged 

architecture for CNNs using nanodevice crossbars integrating several digital and analog components. Second, 

the authors have benchmarked several CNN architectures including an architecture with 330 million 

parameters. Even though the authors have not compared their design with GPUs, they have reported the 

speedup vs. DaDianoNao which forms the basis for our estimation vs. GPUs. Table 4. summarizes the power 

and performance estimates for implementations based on conventional technology such as GPUs and ASICs 

and implementations based on CMOS with memristors. In this table, we report relative speedup and energy 

benefits but not absolute numbers such as TFLOPS and TFLOPS/W because these raw numbers don’t 

translate to actual performance and power benefits. Instead actual benefits depend on the type of application 

being implemented, the number of basic operations involved, number of shared memory accesses (for GPUs) 

involved etc. We provide these numbers by directly referring to the above papers since they have already 

reported the numbers and are model specific.     

Table 5. Estimated Energy and Speedup of various platforms for large-scale image recognition model 

    Energy Benefits              Speedup 

           GPU (Tesla v100)              1x                    1x 

         ASIC (DaDianoNao)             75x                  10x 

            ENAI (ISAAC)             90x                 140x 

 

7.1.2 Discovering genetic networks at whole genome scale 

PGMs like BNs have been widely used in life sciences, especially in the data-intensive domains of 

bioinformatics and computational genomics. Progress in genomic and proteomic sequencing tools has led to 

an abundance in data but implementing whole genome scale networks with BNs is prohibitive with current 

technology and can only be done after setting constraints on the design. We consider one such application 

which is part of the DREAM challenges, which are well-known benchmarks in bioinformatics [192]. This 

involves performing probabilistic inference on genome scale networks (3,456 genes, 300 experiments). One 

key difference in this application compared to the ImageNet model is that the computation involved is not 

standardized; in fact, several attempts for this challenge typically use several different algorithms ranging 

from brute force to very complex, making this analysis more challenging. Hence, we compare the hardware 

platforms with respect to the actual number of CPUs used by one of the leading approaches for this challenge, 
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and then scale it to other platforms in roughly equivalent compute. For hardware platforms being compared, 

we omit GPUs here as to the best of our knowledge, there are no well-known GPU accelerated inference 

implementations for problems at Genome-scale and which use non-trivial algorithms for inference typically 

required for such applications. The original work reported numbers for CPU, and we extrapolate numbers for 

FPGA/ASICs based on Bayesian inference accelerator works in those hardware platforms [193][194]. The 

metrics being reported for this application aim to capture the large-scale power and performance differences 

that could be achieved with NEAI for very large-scale applications frequent in life sciences and other such 

disciplines. The results are summarized in Table 6: 

Table 6. Estimated Power and Performance of various AI implementations for discovery of genome-scale 

BNs 

 Est. Power 

(Watts) 

Est. Runtime 

(Hrs) 

CPU 30k-40k 200-300 

FPGA/ASICs 12k-20k 50-80 

ENAI (CMOS+MTJ) ~3k ~50 

ENAI (All MTJ) ~1.5k ~25 

 

From multiple works explored in this survey, it is evident that Magnetoelectric devices are more suited for 

PGM-type workloads. For estimating the performance for these ENAI approaches for the genome-scale BN 

workload, we choose i) CMOS-MTJ and ii) All-spin MTJ architectures respectively to capture both hybrid 

all all-nanodevice approaches to BNs. The results are extrapolated from the average power and performance 

numbers reported in corresponding sections and are rough estimates. These results suggest that, based on the 

work so far in ENAI, there is a significant improvement of 1-2 orders of magnitude in power and performance 

estimates for large scale AI applications. These applications are indicative of the near-future workloads of 

AI systems. With such large-scale applications being commonplace, the efficiency and performance 

improvements very well warrant the efforts in developing and innovating ENAI research efforts. The next 

section shall discuss the limitations of ENAI, and the challenges involved in further development of ENAI.  

7.2 Impact of Device Variability and Yield 

Some of the issues facing nanodevice arrays are variability and yield. Initially, device endurance was an 

issue, but several works have demonstrated devices with very good endurance since the beginning of this 

decade [86][87]. Advantage of using nanodevices for architecting for AI is that the imperfections in devices 

can sometimes be used to our advantage. AI models are in general more tolerant to device related issues. In 

this subsection, we review some of the works which try to solve some of the issues associated with these 

nanodevices. Some of the works have studied the impact of device variability on classification accuracy in 

neural network models.  [88] discusses the impact of device variability on the performance of feedforward 

neural networks. The authors randomly drew samples of high and low resistance values of each device from 

a log normal distribution and still achieved recognition accuracy of over 97% for image recognition tasks. 

Several algorithms have been proposed to determine conductance values such that NNMs can tolerate 

variations in device dimensions [89][90][92]. These algorithms are collectively known as variation-aware 

training algorithms. Another way to overcome device variation and low-yield rate is by having multiple 

parallel nanodevices to store a single synaptic weight [91]. Since nanodevices sub-5nm dimensions have 

been shown, the overhead resulting from using multiple devices is small. Several works have also studied 

the impact of device yield rates on recognition accuracy in NNMs. For example, [93] reports that even with 

90% device yield, CNN can still achieve over 96% recognition accuracy. Several works [95][96][97] discuss 

the design of MTJs to mitigate variation and to perform variability-aware device simulations [98] for their 
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use as non-volatile memory and in AI applications. These works allow for developing NEAI architecture, 

where the well-studied noise and variability of these devices is used to perform stochastic computations. For 

example, the analysis in [98] shows that the variability in MTJ devices can be modeled accurately by a skew 

normal distribution, and using this distribution, the circuits can be designed to a target write-error-rate 

(WER), where if the application can allow a higher WER (by just 1% more), the write voltage can be reduced 

from 1.1v to 0.8v, reducing write energy by ~37%. 

7.3 Challenges and Limitations 

Although emerging technologies offer a lot of potential for architecting AI systems, they still have many 

challenges and limitations which impede their deployment. Individually evaluated, nanodevices have several 

advantages such as compactness, unique properties, low-power etc. but demonstrating these advantages 

through large-scale applications still needs some work. Researchers need to come up with innovative circuit 

and architectural ideas to utilize the special properties of nanodevices. Although issues have been addressed 

individually, whether they would be issues when systems are built is another question.  

Wafer-scale manufacturability is one of major concerns for systems with nanodevices. Fabs must spend 

significant amount of resources to develop and implement new processes to manufacture these nanodevices 

with high yield rates. This can happen only if companies believe that using these nanodevices give significant 

benefits. One of the main goals of this paper is to show that these nanodevices indeed have huge potential to 

substantiate these costs. It is going to be the case in the coming decade as the innovations in CMOS 

architectures start to saturate toward diminishing returns and these ENAI approaches are perceived to be 

more viable.  

Another major concern in the immediate future as the CMOS-augmented ENAI architectures start to become 

mainstream is the problem of signal conversion overhead. Typically, analog CMOS designs are used for very 

specific applications in signal processing applications. Digital CMOS technology is mainstream for designing 

processors, accelerators, FPGAs, ASICs etc. On the other hand, nanodevices mostly operate in analog 

domain. Hence when emerging devices are combined with CMOS, signal conversion between the two 

domains becomes an overhead. This issue may be overcome in the future when end-to-end all-nanodevice 

architectures on the lines of as described in section 5 can be designed. 

Software integration is another area where there has been little work. As the ENAI architectures become 

more mainstream, the ability for developers to simply use the popular libraries such as TensorFlow, PyTorch, 

R in writing their models which then run on this emerging hardware would be a challenge. This would require 

design of sophisticated hardware-aware compilers which refactors and distributes the computation to get the 

most out of these high-performance platforms. This tells that there is a still a long way to go before computers 

fully built using nanodevices come to existence. In the short term, one possible way to go forward would be 

to design these nanodevice-based PCI-e cards that can slot into the motherboards and have software recognize 

them as co-processors or accelerators.   

7.4 Conclusion 

ENAI encompasses directions, works, and efforts that focus on designing AI architectures and associated 

circuitry leveraging unique properties of emerging nanodevices. ENAI has enormous potential to accelerate 

AI research which could trigger a wide-scale adoption in real-world applications. As unique device 

technologies become more prominent, AI algorithms must rely more on their capabilities. This, to not only 

better utilize the nanodevices but also to inform research in emerging technology and nanoarchitectures, of 

specific opportunities. As we have uncovered in this survey, emerging nanotechnology promises many orders 

of magnitude power and performance benefits vs conventional directions. It is likely that future directions 

will rely increasingly on nanodevices. On the other hand, conventional CMOS-based technology has still 

untapped benefits for AI; further engineering and research in AI-specific custom ASICs, AI-related 

instruction set extensions for microprocessors, and hybrid approaches as well, are to be expected in the 

coming decade.  
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