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Abstract— Probabilistic graphical models are powerful 
mathematical formalisms for machine learning and reasoning 
under uncertainty that are widely used for cognitive computing. 
However they cannot be employed efficiently for large problems 
(with variables in the order of 100K or larger) on conventional 
systems, due to inefficiencies resulting from layers of abstraction 
and separation of logic and memory in CMOS implementations. 
In this paper, we present a magneto-electric probabilistic 
technology framework for implementing probabilistic reasoning 
functions. The technology leverages Straintronic Magneto-
Tunneling Junction (S-MTJ) devices in a novel mixed-signal 
circuit framework for direct computations on probabilities while 
enabling in-memory computations with persistence. Initial 
evaluations of the Bayesian likelihood estimation operation 
occurring during Bayesian Network inference indicate up to 127x 
lower area, 214x lower active power, and 70x lower latency 
compared to an equivalent 45nm CMOS Boolean 
implementation. 

Keywords—Probabilistic graphical models; Bayesian networks; 
non-Boolean computing; mixed-signal; nanoscale; memory-in-
computing. 

I. INTRODUCTION 
Most real-world computation problems e.g., graphics 

processing, network threat detection, medical diagnoses, 
speech recognition, data-mining, etc., require reasoning or 
decision-making in the presence of uncertainty: i.e., without 
the availability of complete information and/or well-
characterized logic relationships. Probabilistic models (such as 
Bayesian Networks [1][2]) are a powerful formalism capable 
of reasoning under uncertainty and highly suitable for 
addressing such applications [3]-[5]. These models use 
probabilities as the basis of representing uncertainty in 
knowledge for a given domain, and require computations on 
probabilities for reasoning and machine learning. These tasks 
are performed for every variable involved in the domain and 
require (i) distributed storage of probabilities, and (ii) frequent 
arithmetic operations such as multiplication and addition of 
probability values. A key requirement for scalable hardware 
implementation of probabilistic graphical models is the 
efficient and parallel implementation of these probabilistic 
computations.  

Conventional von Neumann architectures are not well 
suited because they (i) would require emulation of an 
inherently non-deterministic, non-logical computing model on 
a deterministic Boolean logic framework, (ii) incorporate a 
limited number of arithmetic units (due to high complexity of 

implementing resource-intensive operations such as 
multiplication with Boolean logic) which leads to serialized 
execution (even with multi-core processors) for models with 
large number of variables, (iii) use a rigid separation between 
logic and memory, as opposed to supporting distributed local 
storage and processing capabilities, and (iv) use a radix-based 
representation of data which is inefficient for representing 
probabilistic information and has no inherent fault-resilience. 

We propose a new non-Boolean multi-domain mixed-signal 
circuit framework for probabilistic computation at nanoscale, 
called Probability Arithmetic Composers. This is applicable in 
reasoning and machine learning frameworks that use 
probabilistic graphical models for knowledge representation, 
such as Bayesian Networks (BNs). The main contributions 
include: (i) an unconventional multi-valued spatial 
probabilistic information representation supporting graceful 
degradation, (ii) a new mixed-signal Probability Arithmetic 
Composer circuit framework to implement arithmetic 
operations on probabilities while supporting memory-in-
computation, where elementary arithmetic functions 
themselves are the building blocks instead of logic functions, 
and (iii) evaluation of proposed approach vs. CMOS 
implementation of likelihood estimation operation for Bayesian 
Network inference as an example. The Probability Arithmetic 
Composer paradigm utilizes voltage-controlled Straintronic 
MTJ (S-MTJ) devices, where the applied input voltage results 
in a strain-induced magnetization reorientation in the S-MTJ 
free layer, which can be made persistent for non-volatility. This 
magnetization reorientation changes the S-MTJ resistance that 
can be measured with tunneling current through the device, 
generated by a reference voltage. Thus the S-MTJ provides a 
mechanism for efficient compression of redundant information 
in magnetic domain (resistance) into a compact form 
(current/voltage) for computation. While we use binary S-
MTJs as an example in this paper, S-MTJs may be designed 
with multiple magnetization states to enable new multi-valued 
redundant representation of information, which can easily be 
converted into probability values and supports graceful 
degradation in the presence of errors vs. conventional radix 
representations. Other devices that exhibit such multi-domain 
interactions with non-volatility may also be used. 

The rest of the paper is organized as follows. The 
underlying technology using voltage controlled S-MTJ device 
and spatial probabilistic data representation are described in 
Sections II and III respectively. Section IV presents an 
overview of the new mixed-signal Probability Arithmetic 
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Composer circuit framework for computation on probabilities. 
Section V presents details on circuits for elementary arithmetic 
functions on probabilities as building blocks for the Probability 
Arithmetic Composer framework. Section VI presents an 
overview of Bayesian Networks as an application example. 
Section VII describes the evaluation methodology and 
comparison with conventional CMOS implementations, 
followed by conclusion in Section VIII. 

II. TECHNOLOGY OVERVIEW: VOLTAGE CONTROLLED 
STRAINTRONIC MTJ DEVICE 

The concept of straintronics, where the bistable 
magnetization of a shape anisotropic multiferroic nanomagnet 
is switched with electrically generated mechanical strain, is 
attractive due to its extreme low energy of switching. A 
straintronic MTJ (S-MTJ) device is shown in Figure 1a. It 
consists of three layers - a "hard" ferromagnetic layer with a 
fixed magnetization orientation, an ultrathin spacer layer, and a 
"soft" ferromagnetic layer with variable magnetization 
orientation. The three layered stack is fabricated on a thin 
piezoelectric film grown on an n+-Si substrate.  

Because of dipole coupling between the hard and soft 
layers, they tend to have mutually anti-parallel magnetizations 
(see Figure 1a) and in that configuration, the resistance of the 
S-MTJ measured between the two ferromagnetic layers is high. 
Application of an input voltage (Vin) at the two (shorted) 
contact pads generates a biaxial strain in the piezoelectric layer 
underneath the soft magnet (compression along the major axis 
of the elliptical soft magnet and tension along the minor axis) 
[7][8], which rotates the magnetization of the soft magnet by 
an angle Θ via the Villari effect, if the soft layer is 
magnetostrictive and has positive magnetostriction. This 
reduces the angular separation between the magnetization 
orientations of the hard and soft layers, which in turn reduces 
the resistance of the S-MTJ. If the input voltage is withdrawn, 
the stress in the soft magnetic layer relaxes and hence its 
magnetization will tend to return to its original orientation 

because of dipole coupling with the hard magnetic layer. In this 
case, the operation is volatile. The resistance ratio between the 
high- and low-resistance states as a function of applied voltage 
v is roughly given by [9], 

(ݒ)ݎ = ோೀಿ
ோೀಷಷ

= ோ(௩ୀೀಿ)
ோ(௩ୀ) = ଵିఎభఎమ

ଵିఎభఎమ .ୡ୭ୱ [(ೀಿ)]
, (1) 

where Θ(VON) is the angle by which the magnetization of the 
soft layer rotates under stress generated by input voltage VON, 
assuming it starts from being exactly anti-parallel to the hard 
layer initially, and η1, η2 are the spin-injection/filtering 
efficiencies at the interfaces between the two ferromagnets and 
the spacer layer. At room temperature, these quantities are 
roughly 70% [10]. The maximum value of Θ is 900 unless the 
input voltage pulse is timed in a certain way to allow 
reorientation by 1800 [11]. 

The magnetization rotation can be made persistent through 
a scheme shown in Figure 1b, resulting in non-volatile 
operation. The electrodes A – A’ are shorted to form one input 
terminal, and C – C’ are shorted to form the second terminal. 
When a voltage is applied between these terminals and the n+-
substrate, electric fields are generated underneath the pads, 
producing a highly localized strain field in the piezoelectric 
film [7][8]. This results in biaxial strain (compression/tension 
along the line joining the electrodes and tension/compression 
along the perpendicular direction) since the distance between 
the electrode pairs is approximately equal to the PZT film 
thickness. This strain will then be elastically transferred to the 
soft layer of the S-MTJ stack despite any substrate clamping.  
The scheme requires a small in-plane external magnetic field 
(B) along the minor axis of the soft magnet which brings the 
two stable magnetization states out of the soft magnet’s major 
axis (easy axis) and aligns them along two in-plane directions 
that lie between the major and minor axes with an angular 
separation of ~1320.  These two stable orientations (Ψ1 and Ψ0) 
of magnetization represent the low and high resistance states, 
respectively.  The magnetization of the hard magnetic layer is 

 
Figure 1. (a) Volatile S-MTJ device configuration: Voltage input induces strain in soft-layer layer adjusting magnetization orientation; a 
reference terminal (Ref.) is used for resistance readout; and (b) Non-volatile S-MTJ device: The MTJ stack is placed in between two pairs of 
electrode pads such that the line joining each electrodes subtends an angle of 150 and 1650 respectively with the major axis of soft magnetic 
layer. A magnetic field B is applied along the minor axis of the soft magnetic layer. Voltage input persistently changes magnetization 
orientation through strain. 
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parallel to Ψ1, which is why the low resistance state is visited 
when the magnetization of the soft magnetic layer is along Ψ1. 
Since Terfenol-D has a positive magnetostriction coefficient, 
compressive stress along the line joining the electrodes A–A’ 
will stabilize the magnetization at Ψ0, while a compressive 
stress along C–C’ electrodes will switch the magnetization 
back to Ψ1 [15]. These magnetization orientations are stable, 
i.e. if the magnetization is left in either state it remains there in 
perpetuity even after power is switched off, which makes the 
device non-volatile. The change in resistance of the S-MTJ is 
read by using a reference voltage, which generates an output 
current. Thus, conversion between voltage, magnetic and 
current domains is achieved.  

The transfer characteristics of the S-MTJ devices (Figures 
2b-c and Figures 2e-f) are extracted from stochastic Landau-
Lifshitz-Gilbert (LLG) simulations, described in refs. [12]-
[16]. For the volatile S-MTJ transfer characteristics, we used a 
soft layer made of Terfenol-D with dimensions 120nm x 
105nm x 6.5nm, and 110nm x 90nm x 9 nm for non-volatile S-
MTJ. The piezoelectric layer was assumed to be lead-
zirconate-titanate (PZT) of thickness 100nm. The effect of 
room-temperature thermal noise was taken into account [12]-
[16] and the characteristics presented are thermally averaged 
characteristics. Furthermore, although the strain generated in 
the magnet is biaxial, we approximated it with uniaxial strain 
(which overestimates the voltage needed to generate a given 
strain). This is somewhat compensated by the fact that we 
assume 100% strain transfer from the piezoelectric film to the 
magnetostrictive layer, leading to an underestimation of the 
voltage needed to generate a given strain. Every data-point in 

Figures 2b,e is generated by averaging 10,000 simulations. The 
LLG simulations also yield the switching time needed for Θ(v) 
to stabilize to its final value after input voltage is abruptly 
switched on, shown in Figures 2c,f.  

III. MULTI-VALUED PROBABILISTIC INFORMATION 
REPRESENTATION 

In the proposed framework, information is represented in 
the magnetic domain (magnetization vector orientation of the 
S-MTJ free-layer, and thus the resistance) as a non-Boolean 
probabilistic vector of ‘n’ spatially distributed digits 
,ଶ,ଵ) …  ). As opposed to conventional number systems,
(e.g. binary, HEX etc.), in this representation all digits carry 
equal weight irrespective of position, which implies inherent 
redundancy and better error resilience through graceful 
degradation. Each digit   can take any one of ‘k’ values, 
where k is the number of distinct magnetization states for an S-
MTJ (e.g., for S-MTJs with 4-states, k=4 and any digit = 
{0,1,2,3}). The value of the probability P represented by this 
vector is given by the following formula: 

ࡼ =
∑ 
ୀଵ

݊(݇ − 1)  . 
(2) 

Here, each digit  ∈ {0,1,…,k-1}. Each probability digit is 
physically represented in a persistent manner using the non-
volatile S-MTJ resistance states, determined by relative 
magnetization orientation of the magnetic layers. For example, 
for binary S-MTJ devices the probability digit 0 is represented 
using high resistance and digit 1 is represented with low 
resistance. Since these resistance states are programmed using 
input voltages, there is a corresponding digital voltage 

 
Figure 2. (a) Volatile S-MTJ circuit schematic; (b) Simulated DC transfer characteristics for volatile S-MTJ showing resistance ratio r(v), as 
function of input voltage Vin; (c) Simulated switching delay characteristics for volatile S-MTJ; (d) Non-volatile S-MTJ circuit schematic; (e) 
Simulated DC transfer characteristics for non-volatile S-MTJ showing resistance ratio r(v), as function of input voltage Vin. Hysteresis 
indicates persistence in resistance state; and (c) Simulated switching delay characteristics for non-volatile S-MTJ. 
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Figure 3. (a) Non-volatile S-MTJ device schematic showing multi-domain representation: Vin is the input voltage between the two input 
terminals for switching magnetization, Vref is used during readout; and (b) Spatial probabilistic information representation for S-MTJ with 2 
states, and its equivalent in resistance, voltage and current domains.  

equivalent for probability representation. The data is read-out 
in analog electrical domain with discrete current/voltage 
values as explained later in this paper (see Figure 3 for 
equivalent data representations in multiple domains for the 
case of binary S-MTJs as an example). The resolution of data 
representation and computation is defined as the minimum 
non-zero probability value that can be represented in this 
format, determined by the number of digits n and the number 
of states of each digit k. 

A. Fault Resilience (Supporting Graceful Degradation) 
Information representation and computation in our 

approach is inherently fault resilient (with graceful 
degradation) in both electrical and magnetic domains. 
Consider two possible single-fault scenarios: (i) input voltage 
at any position is shifted by a single level, and (ii) a 
magnetization vector in a S-MTJ is offset to a neighboring 
state of the ‘intended’ value. Given that the representation is 
redundant with all digits carrying equal weight, either fault 
would cause the overall value to be erroneous by 1/[n(k-1)], 
i.e., the resolution of the computation. This is in direct contrast 
to conventional n-bit radix-based representations where a 
single fault can cause up to a 2n-1 error in the value being 
stored/computed. Our approach thus supports graceful 

degradation, which is linear with increasing number of faults. 
Furthermore, the number of digits used (n) can be adjusted 
depending on the precision and fault-resilience required by the 
application.   

IV. PROBABILITY ARITHMETIC COMPOSER FRAMEWORK  
We propose an unconventional mixed-signal Probability 

Arithmetic Composer circuit framework for probabilistic 
computation, using emerging nanoscale devices exhibiting 
multi-domain interactions (S-MTJ devices) and multi-valued 
probabilistic information representation. Here, arithmetic 
functions themselves are the basic building blocks, rather than 
relying on Boolean logic. A Probability Arithmetic Composer 
performs arithmetic operations on probabilities that are in 
spatial probabilistic representation encoded in multiple 
resistance states (magnetic domain). The result of the operation 
is in multi-valued discrete electrical (analog current/voltage) 
domain. A Decomposer circuit is used to convert back to a 
redundant spatial representation for cascading successive 
Arithmetic Composers and/or interfacing with CMOS.  

A Probability Arithmetic Composer can be recursively 
defined as a hierarchical instantiation of other Arithmetic 
Composer functions until Elementary Arithmetic Composer 
functions with S-MTJs are reached, as shown in Figure 4. 
Thus, a Probability Arithmetic Composer (݂) consisting of 

 
Figure 4. Probability Arithmetic Composer Circuit Framework: Hierarchical representation of Probability Arithmetic Composers showing 
nested levels of self-similar Composers, with top-most level (n-1) being Dominator Composer innermost (level-0) being Elementary 
Arithmetic Composers. 
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Figure 5. (a) Probability Composer circuit topology; and (b) The 
effective resistance for corresponding encoded probability value 
for binary S-MTJ as an example (represented using probability 
digits and stored in each S-MTJ resistance state). Resistance is 
normalized to its OFF state resistance.  

‘n’ levels of operations to be performed can be recursively 
expressed as: 

݊ ݎ݂ > 1,   ݂ = ݂ିଵ൫ ଵ݂
ିଶ, ଶ݂

ିଶ, ଷ݂
ିଶ, … , ݂

ିଶ൯ (3) 

݊ ݎ݂ = 1,                       ݂ଵ = ݂(ݏݐݑ݊݅ ݕݎܽ݉݅ݎ).   (4) 

Here f 0 is Elementary Arithmetic Composer acting on 
primary inputs. The top-level operation to be performed (݂ିଵ) 
is called the Dominator Composer since it determines the 
overall Arithmetic Composer circuit topology, where each 
component is either another Arithmetic Composer or an 
Elementary Arithmetic Composer. This approach is easily 
scalable since any Arithmetic Composer can be hierarchically 
built by plugging Arithmetic Composer nodes in a Dominator 
Arithmetic Composer without changing the circuit style, 
leading to self-similar fractal-like circuits.  

For example, a function F = (Pa.Pb)+(Pc.Pd) can be 
hierarchically represented as F = ݂ଶ =  ݂ଵ( ଵ݂

, ଶ݂
)  = 

SUM[MUL(Pa, Pb), MUL(Pc, Pd)]. Here n=2 since there are 
two levels of operations to be performed 
(݂ଵ = ݂ ݀݊ܽ ܯܷܵ =  While S-MTJs are used in this .(ܮܷܯ
work, the framework is generic and any other device exhibiting 
multi-domain interactions and non-volatility may be used as 
well. 

A. Probability Composer Circuit 
We use a Probability Composer circuit to convert the 

spatial probability representation in magnetic domain 
(resistance) to the electrical domain for computation. The 
output can be either in analog current or voltage domains, and 
is readout by using a reference voltage. For an n-digit 
probability vector, a Probability Composer uses n S-MTJ 
devices each having k states (Figure 5a). The output of the 
circuit is proportional to the sum of all inputs and has [n(k-1) 
+ 1] distinct resistance states. Thus the output resolution is 
1/[n(k-1)]. As an example, the output resistance states for a 
Probability Composer using 10 binary S-MTJs (i.e. n=10, k=2) 
is shown in Figure 5b for a resolution of 0.1. We use an 
inverse-linear relationship between S-MTJ resistance (ri) and 
the probability digit (pi) as follows.  

ݎ =
ߚ

 +  (5) .   ߝ

Here, β and ε are constants chosen such that the above 
relationship holds. For binary devices with two resistance 
states (ri=ROFF corresponding to pi=0 and ri=RON 
corresponding to pi=1), by substituting the corresponding ri 
and pi values we get  

ߝ = ଵ

൬
ೃೀಷಷ
ೃೀಿ

ିଵ൰
ߚ ; = ைிிܴ.ߝ  = ோೀಷಷ

൬
ೃೀಷಷ
ೃೀಿ

ିଵ൰
. (6) 

Alternative representations may also be used where the 
resistance is linear with respect to the probability digit. Such 
alternatives will require changes to the circuit 
implementations as well. The effective resistance of an n-digit 
Probability Composer (RPC) using binary S-MTJs has n+1 
discrete states, given by the following expression. Here, the 
inverse of RPC is proportional to the sum of probability digits. 

1
ܴ

= 
1
ݎ



ୀଵ

= 
) + (ߝ

ߚ



ୀଵ

=
1
ߚ




ୀଵ

൩ + ൜
ߝ݊
ߚ
ൠ . (7) 

When using a load resistance RL much smaller than the S-
MTJ resistance connected between the output terminal of the 
Probability Composer and ground, the output current flowing 
through this load resistor is given by: 

௨௧ܫ = ோܸாி

(ܴ + ܴ) ≈
ோܸாி

ܴ
,ܴ ≪ ܴ 

= ோܸாி

ߚ




ୀଵ

൩ + ൜
ߝ݊ ோܸாி

ߚ
ൠ . 

(8) 

The term in {.} represents the additional current that needs 
to be corrected for output linearity. This can be done with a 
Correction Circuit (see Figure 6a), such that the output current 
is given by: 

௨௧ܫ ≈
ோܸாி

ߚ




ୀଵ

൩ + ൜
ߝ݊ ோܸாி

ߚ
ൠ  + ܸ

ܴ
 

= ோܸாி

ߚ




ୀଵ

൩ =  
݊ ோܸாிࡼ

ߚ . 
(9) 

Here, VADJ = -VREF, RADJ = β/(n.ε) and P is the probability 
value represented by the digital probability vector as defined 
in equation (2). Thus for every probability value there is a 
corresponding current domain output. However, we are 
interested in a voltage output since S-MTJs are voltage 
controlled. The current domain signal can be converted to 
analog voltage domain by using the resultant voltage across 
the load resistance. However, since the value of RL has to be 
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necessarily low relative to S-MTJ resistance for the 
approximation in equations (8)-(9), the range of output 
voltages using this scheme is too low to be useful without 
significant amplification. If the output voltage non-linearity 
can be tolerated at read-out (through the use of Decomposer 
circuits explained next), then the analog voltage output with a 
larger range can be obtained by simply eliminating the load 
resistance RL (see Figure 6c). The output voltage is given by 
the following expression: 

ܸ௨௧ = ோܸாி . ൦

1
ܴ

− 1
ܴ

1
ܴ

+ 1
ܴ

൪ = ோܸாி . ቈ
∑ 
ୀଵ

∑ 
ୀଵ + ߝ2݊

= ோܸாி .
ࡼ

+ࡼ  .൨ߝ2

(10) 

Here P is the probability value represented by the digital 
probability vector, defined in equation (2). This topology 
results in a non-linearity in the output; for probability values 
close to 0 the output voltage is proportional to sum of 
individual probability digits, but degrades for probability 
values close to 1. As long as different output levels can be 
differentiated, the above topology may be used. This represents 
a trade-off between using subthreshold CMOS analog support 
circuits for amplifying the low output voltage range exhibiting 
linearity as in the case with current-mode readout, vs. 
tolerating non-linearity in output for wider voltage range with a 
potentially simpler circuit implementation for voltage-mode 
readout. This circuit can now be considered as an element with 
higher resolution than a single S-MTJ and can be used for 

building high-resolution circuits for probability arithmetic.  

B. Decomposer Circuit 
We need an approach to convert the analog voltage output 

at a Composer circuit back to a digital probability vector 
representation. To achieve this we design a Decomposer circuit 
with volatile S-MTJs as follows (see Figure 7). The 
Decomposer has the following requirements: (i) For converting 
analog input voltage to an n-digit probability vector, it requires 
n Decomposer Elements; each Decomposer Element is 
designed to trigger at a different input voltage value, i.e. they 
have different threshold voltages. (ii) When triggered, each 
Decomposer Element needs to generate a pair of differential 
output voltage signals, so as to switch a non-volatile S-MTJ in 
the successive stage. 

Drawing inspiration from flash analog-to-digital converters, 
we use a resistive ladder to setup varying threshold voltages for 
each decomposer element (see Figure 7b). When uniform 
resistances are used in the ladder, it responds to a linear change 
in input voltage. Input non-linearity can be accommodated by 
using non-uniform resistances in the ladder. Alternatively, the 
S-MTJ device may be designed to have varying thresholds by 
changing the device parameters (such as PZT thickness, etc.). 
Here, the volatile S-MTJs in each decomposer element (see 
Figure 7a) act as voltage comparators; if the input voltage is 
above the control voltage (setup using the resistance ladder) the 
S-MTJ switches its resistance; else it remains in its previous 
state. To generate differential voltage output when triggered, 
each decomposer element consists of two branches; one with 
S-MTJ in pull-up and the other with S-MTJ in pull-down. The 

 
Figure 6. Read-out schemes for Probability Composer circuit. (a) Current-mode read-out with corresponding output values shown in 
(b); and (c) Voltage-mode read-out with corresponding values shown in (d). 
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possible states of the S-MTJs and the corresponding output 
voltages are shown in Table I for this configuration. 

V.  ELEMENTARY ARITHMETIC COMPOSERS  
Elementary Arithmetic Composers are the circuits at the 

lowest level of the recursive Probability Arithmetic Composer 
definition that perform atomic arithmetic operations on 
probabilities. In these circuit implementations, we leverage 
underlying physical laws for computation rather than using 
abstraction with Boolean logic. Addition on two probabilities 
(represented using two Probability Composers) is easily 
performed by using a parallel topology of the two Probability 
Composers. Since the inverse of the resistance of each 
Probability Composer is proportional to the encoded 
probability value, the inverse of the total resistance is 
proportional to the sum of the two input probabilities. By 
applying a common reference voltage and using correction 

circuits as before to overcome the limited ROFF/RON, the output 
can be read either in current or voltage domain as discussed 
below.   

௨௧ܫ = ோܸாி

ቀ ܴି.ܴି
ܴି + ܴି

+ ܴቁ
≈ ோܸாி ൬

1
ܴି

+
1

ܴି
൰ 

= ோܸாி

ߚ
൭



ୀଵ

൱


+ ൭



ୀଵ

൱


+ ൜
ߝ2݊ ோܸாி

ߚ
ൠ  

= ೃಶಷ
ఉ

ࡼ] + [ࡼ + ቄଶఌೃಶಷ
ఉ

ቅ;  RL<< RPC. (11) 
Alternatively, the voltage mode-readout for a single 

Probability Composer can be extended for two inputs by using 
each additional Probability Composers in parallel, as shown in 
Figure 8a. This scheme however exhibits non-linearity in 
output voltage (Figure 8b). Extending this parallel topology for 
all Probability Composers involved easily accommodates 
scaling to a higher number of inputs. 

ܸ௨௧ = ோܸாி . ൦

1
ܴି

+ 1
ܴି

− 2
ܴ

1
ܴି

+ 1
ܴି

+ 2
ܴ

൪ 

= ோܸாி . 
ࡼ + ࡼ

ࡼ + ࡼ + ߝ4
൨ 

(12) 

TABLE I. DECOMPOSER ELEMENT OPERATION 

Operating 
Condition 
Vapp = 
(Vin - Vctl) 

S-MTJ 
Resistance 

Output1 
(Vout1) 

Output2 
(Vout2) 

Probability 
Digit 

Vapp < Vth ROFF 0 VREF/3 0 
Vapp > Vth RON VREF/3 0 1 

Note: Here, Vin is the analog input voltage applied to the 
decomposer circuit, Vapp is the applied voltage difference across 
the inputs of a Decomposer Element, and Vth is the threshold 
voltage of switching for a decomposer element. 

 
Figure 7. Decomposer Circuit Design: (a) Decomposer Element 
used to generate differential digital voltages based on analog 
input voltage for a given threshold voltage; and (b) Full 
Decomposer circuit consisting of n Decomposer Elements to 
convert analog voltage signal to n-digit probability vector using 
discrete voltage representation. Here, Vctl-i controls the threshold 
voltage for the i-th element and is determined by the resistance 
ladder network. 

 
Figure 8. (a) Elementary addition composer using voltage mode read-out; and (b) Corresponding output voltage vs. probability 
characteristics as calculated by eq. (12), and validated using HSPICE simulations for all possible input combinations. 
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To implement multiplication, we leverage Ohm’s law, V= 
I.R. Rewriting the relationship as I = V.(1/R), we use one set of 
inputs for multiplication in voltage domain (V) and the other in 
the resistance (1/R), since the inverse of the Probability 
Composer’s resistance is proportional to the stored probability 
value. For the first input in voltage domain, we use another 
Probability Composer storing the input probability value and 
voltage-mode readout. The Multiplication Composer topology 
is shown in Figure 9a. Thus the resulting output current 
represents multiplication of two probabilities. In the following 
equations, g represents the gain of voltage amplifier (e.g. using 
CMOS analog support circuits such as op-amps) used to 
amplify the output of first Probability Composer. 

௨௧ܫ ≈  
ఉ

[ ܸ.ࡼ] =  
ఉ

.݃. ோܸாி . ቀ ࡼࡼ
ାଶఌࡼ

ቁ; RL<< RPC. (13) 

Eliminating the load resistance RL and simply using the 
output node voltage achieves voltage-mode readout with a 
higher output range. The output voltage is governed by the 
following relation: 

ܸ௨௧ = ݃. ோܸாி . 
ࡼ.ࡼ

ࡼ) + ࡼ)(ߝ2 +  .൨(ߝ2
(14) 

A more complex arithmetic operation such as sum-of-
products can be composed using these Elementary Addition 
and Multiplication Composers. We illustrate an example to 
compose an operation of the form (PA.PB)+(PC.PD). One way to 
implement it is to use Elementary Addition and Multiplication 
Composers and connect them serially. However, the 
Probability Arithmetic Composer framework allows us to 
implement it efficiently for parallel computation by 
hierarchically composing an Add-Multiply composer as 
follows. Each product term implemented with an elementary 
Multiplication Composer is arranged in a topology of the 
Addition Composer (see Figure 10a). Thus the dominator 
Composer structure is that of the adder, which uses elementary 
Multiplication composers as the basic building blocks. This 
topology realizes the add-multiply operation in a single step 
(simulated output characteristics shown in Figure 10b).  

VI. NANOSCALE COGNITIVE REASONING WITH BAYESIAN 
NETWORKS  

A Bayesian Network (BN) is a probabilistic reasoning 
model [1][2] representing knowledge of an uncertain domain, 
whose structure (e.g., a tree) captures qualitative relationships 
between variables.  This is attractive because it is a consistent 

 
Figure 9. (a) Elementary multiplication composer topology; and (b) Output probability vs. voltage characteristics in continuous analog 
domain validated using HSPICE simulations for all possible input combinations. 

 
Figure 10. (a) Add-Multiply Composer for calculating sum-of-products on input probabilities. The output is in analog current-domain, and 
corresponds to the function, PA.PB+PC.PD. The voltage adjusters are used to amplify the voltage from first Probability Composer stage, 
which is then used as input voltage for read-out at the second stage. These adjusters and other support circuits such as the inverting 
amplifiers can be implemented using CMOS analog circuits (e.g. op-amps); and (b) Output characteristics showing probability output for all 
possible input combinations and the corresponding output current value, which are obtained using HSPICE simulations. 
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and complete representation, in addition to being modular and 
compact [1][2]. A typical BN is a directed acyclic graph, with 
individual nodes representing knowledge about variables in a 
system. Dependencies between the variables are represented as 
directed links between the nodes. A node is a parent of a child 
if there is a directed link from former to the latter. A node 
without parents is called a root node, while a node without 
children is called a leaf node. Each node can have several states 
for its corresponding variable, and a conditional probability 
table (CPT) stores conditional probabilities that quantify the 
strength of its dependencies with its parents. A part of a typical 
BN is shown in Figure 11 focusing on a node X with one parent 
node A and two child nodes, Y and Z. 

When constructing a BN for a specific application, 
hypotheses can be expressed as BN variables and a unique 
probability is assigned to each hypothesis initially (either based 
on prior knowledge of the domain or learned from data). 
Inference in the BN requires computation of belief, i.e. the 

probability of a hypothesis based on current events observed 
(state of evidence nodes) and corresponding conditional 
probability distributions, and is performed via message 
propagation (likelihoods and priors [1][2]) through the network 
using Pearl’s Belief Propagation algorithm [1]. The key 
operations in a BN during inference are likelihood/prior 
estimation to generate these messages and belief update, which 
involve probability arithmetic.  

Belief update refers to estimating the probability that a 
node is in a particular state based on evidence. For example, 
assuming every node in Figure 11 has four possible states, the 
belief update is performed as per equation (15). Here, variables 
in bold typeface represent matrices, the ⨂ operator represents 
matrix multiplication, and asterisk (*) represents element-wise 
multiplication. Likelihoods (λ) are represented as column 
vectors and priors (π) as row vectors (see Figure 11).  

(ࢄ)ࡸࡱ = (ࢄ)࣊ߙ ∗  (15) .(ࢄ)ࣅ
Here α is a normalization constant to ensure that the result 

is a probability. Likelihood estimation (λ(X)) and prior 
estimation (π(X)) for a node X are performed based on 
messages from its child nodes (λY(X), λZ(X)) and parent node 
(πX(A)) as follows:  

(ࢄ)ࣅ = (ࢄ)ࢅࣅ ∗  (16) (ࢄ)ࢠࣅ

(ࢄ)࣊ =  (17) .(|ࢄ)ࢀࡼ ⨂()ࢄ࣊
Equation (17) has a sum-of-products form when expanded. 

Finally support messages to parent node (λX(A)) and child 
nodes (πY(X), πZ(X)) are calculated as follows: 

()ࢄࣅ =  (18) ,(ࢄ)ࣅ⨂(|ࢄ)ࢀࡼ

(ࢄ)ࢅ࣊ = (ࢄ)࣊ߙ  ∗  ݀݊ܽ,(ࢄ)ࢠࣅ
(ࢄ)ࢆ࣊ = (ࢄ)࣊ߙ  ∗  .(ࢄ)ࢅࣅ

(19) 

All the above use multiplication and sum-of-product 
operations on probabilities, which can be implemented using 
Composers shown earlier. The likelihood estimation operation 
represented by eq. (16) can be implemented using 
multiplication composers, as shown in Figure 12 for a node 
having four states. Belief update (eq. (15)) and prior support to 
child nodes (eq. (19) are similar since they use multiplication 
operations as well. Prior estimation operation represented by 
eq. (17) can be implemented using add-multiply composers, as 
shown in Figure 13. Likelihood support to parent node (eq. 

 
Figure 11. Part of a BN with showing node X with parent A and 
child nodes Y, Z.  All nodes have four states in this example. 
Each node maintains likelihood vector (λ), prior vector (π), belief 
vector (BEL), and conditional probability table (CPT). The CPT 
information and messages from child/parent nodes based on 
observed evidence are used to calculate λ, π, and BEL vectors 
during Bayesian inference. 

 
Figure 12. Implementation of likelihood estimation operation using Multiplication Composers, corresponding to eq. (16). The inputs to the 
module are likelihood support message vectors λY(X) and λZ(X) from child nodes Y and Z respectively. Each vector has four elements 
corresponding to each state of node X. 
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(18)) is implemented similarly. 

VII. METHODOLOGY AND COMPARISON WITH BOOLEAN 
LOGIC APPROACH 

HSPICE circuit simulator was used to verify the operation 
of Composer circuits with binary S-MTJ devices. The S-MTJ 
device characteristics (Figure 2) were used to build HSPICE 
behavioural macromodels, using voltage controlled resistors 
incorporating the data points, and custom voltage controlled 
delay elements for modeling switching delays. For the non-
volatile device, a digital flip-flop was used to encode the S-
MTJ resistance state persistently.  

Elementary Arithmetic Probability Composers were 
implemented and functionally verified with HSPICE. 
Probability Composers with 10 S-MTJs were used in each 
Elementary Arithmetic Composer topology to enable an output 
resolution of 0.1, inspite of using binary S-MTJs. Analog 
CMOS support circuits (e.g. op-amps) were behaviorally 

modeled for the correction circuits and voltage adjusters. The 
S-MTJ device may be engineered to have a high ROFF/RON such 
that ε-factor can be neglected, obviating the need for correction 
circuits.    

For evaluation and comparison with Boolean logic 
approach, we used an example of implementing Likelihood 
Estimation operation for Bayesian Inference. Here, every 
variable was assumed to support a maximum of 4 states, since 
target applications such as gene expression networks typically 
require three states for describing discrete gene expression 
levels [19]. This operation is described by eq. (16) and 
involves four multiplications to be performed between 
likelihood support messages from child nodes (probabilities). 
Likelihood estimation operation was implemented with four 
Multiplication Composers, each having a resolution of 1/10 
(see Figure 12). Area was calculated based on the S-MTJ 
device dimensions and the spacing required between them to 
minimize magnetic interactions. Detailed simulations revealed 
a center-center spacing of 500nm for the S-MTJ devices. Using 
this, the rectangular area of each S-MTJ device with spacing 
was calculated to be 0.25μm2. Area for CMOS analog support 
circuits was estimated based on area requirement of a wide-
range differential transconductance amplifier [18] in 45nm 
technology. Latency and average active power for Composer 
circuits were extracted using HSPICE simulations. The CMOS 
analog support circuits were behaviorally modeled in HSPICE, 
and worst case delay was estimated to be around 100ns for a 
CMOS amplifier (calculated based on HSPICE simulation of a 
wide-range differential transconductance amplifier [18] driving 
a load of 10 S-MTJs). Similarly, average active power was 
extracted for the transconductance amplifier circuit and used to 
estimate the power dissipation of analog support circuits. 

We implemented the Likelihood Estimation operation using 
4-bit and 5-bit CMOS Boolean multipliers, providing 
resolution of 1/8 and 1/16 respectively for comparison. Figure 
14 shows a conventional Boolean implementation for an array-
based multiplier using 4-bits (for a resolution of 1/8). The 
CMOS multipliers were described using RTL-level Verilog 
HDL and gate-level designs were synthesized with Synopsys 
Design Compiler. The physical layout design was extracted 
from the gate-level design using Cadence SoC Encounter for 
determining physical area. The HSPICE netlists for the 
multipliers, including parasitic resistances and capacitances 
due to routing, were generated using Cadence Virtuoso and 
45nm North Carolina State University (NCSU) Product 
Development Kit (PDK) library. Performance and average 

 
Figure 14. A 4-bit Boolean multiplier with a resolution of 1/8. 

 
Figure 13. Implementation of prior estimation operation using 
Add-Multiply Composers, corresponding to eq. (17). The inputs to 
the module is a prior support message vector πX(A) from parent 
node A. Each vector has four elements corresponding to each state 
of node X. The conditional probability table (CPT) elements are 
stored persistently in the Probability Composers as indicated, 
obviating the need to interface with external memory. 
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active power for CMOS multipliers were calculated using 
HSPICE simulations.  

The Probability Arithmetic Composer implementation 
showed 79x area benefit compared to 4-bit CMOS multipliers, 
and 127x area benefit compared to 5-bit CMOS multipliers. 
This is due to compact mixed-signal implementation of the 
underlying operations, inspite of the large spacing between 
devices for minimizing magnetic interaction of free layers. 
Shielding techniques [20] may be used to further increase the 
density of S-MTJ based Composer circuits. In terms of active 
power, the Probability Arithmetic Composers showed 142x 
lower active power vs. 4-bit CMOS multipliers and 214x lower 
power compared to 5-bit CMOS multipliers, due to the use of 
far lesser active devices. Performance of Probability 
Arithmetic Composer circuits for computation showed 288x 
degradation (higher delay) compared to 4-bit and 221.5x 
degradation compared to 5-bit CMOS multipliers.  The 
performance of Composers in current designs was limited 
mainly by the high parasitic capacitance associated with S-
MTJ devices (in the order of 1fF). The performance may be 
improved through further research in the choice of materials 
used for reducing the parasitic capacitance of these devices.  

However, it is important to note that when considering 
memory access overhead for CMOS using non-volatile flash 
storage (typically having read access latencies of the order of 
10μs even with state-of-the-art solid-state drives), the overall 
performance of Arithmetic Composer approach improves by 
~70x over CMOS due to its memory-in-computation feature. 
While some of the CMOS performance degradation may be 
mitigated by using SRAM caches, this approach would face 
increasing complexity and memory bottleneck issues due to 
limited bandwidth and resource contention, when scaling to 
large problems involving variables in the order of a hundred 
thousand to a million (which is possible when considering 
genetic interactions and gene-environmental interactions for 
example). Composer circuits, on the other hand, can easily 
scale to large number of variables through memory-in-
computation since they incorporate non-volatile storage in S-
MTJ resistance states, thus obviating the need to interface with 
an external memory.  

Since Composer circuits are non-volatile, they can be 
completely switched-off after computation thereby eliminating 
static power dissipation. We envision that a large BN 
implemented using Probability Arithmetic Composer 
framework would operate asynchronously, such that at any 

given event step in a sequence of operations only the active 
nodes are operational. All other inactive nodes will be switched 
off to mitigate power dissipation. These benefits are expected 
to improve further through the development and use of multi-
valued S-MTJ devices.  

VIII. CONCLUSION 
A novel non-Boolean magneto-electric nanocircuit 

technology framework was presented for nanoscale cognitive 
reasoning based on probabilistic graphical models, such as 
Bayesian Networks. HSPICE was used to simulate and verify 
the operation of the proposed Arithmetic Composer circuits, 
where arithmetic functions themselves were used as building 
blocks rather than Boolean logic. It showed up to 127x area 
benefit, 214x lower active power and 70x lower latency (when 
memory access overhead is taken into account) vs. CMOS 
Boolean implementation of likelihood estimation operation 
used in Bayesian Network inference. The benefits of the 
proposed approach are due to several factors: (i) Data 
representation is directly on probabilities. (ii) Novel magneto-
electric Arithmetic Composer circuits allow direct arithmetic 
operations on probabilities without emulation through logic. 
(ii) Non-volatility in S-MTJ resistance states is leveraged for 
novel memory-in-computing schemes, eliminating the need for 
interfacing with external memory and transfering data between 
memory and computational units. From an architectural 
perspective, the integration of memory in computation 
potentially overcomes the memory bottleneck in conventional 
stored-program approach with CMOS. While S-MTJ devices 
were used in this paper, the Probability Arithmetic Composer 
paradigm is generic and may be used with other devices that 
exhibit multi-domain interactions with non-volatility [21].  

Future work in this direction will look at implementing 
learning functions using the Probability Arithmetic Composer 
framework. Several architectures may be possible using these 
Composers; one direction is to implement a Bayesian memory 
incorporating Composers such that it helps in accelerating 
Bayesian inference and learning, or a distributed architecture 
directly mapping probabilistic graphical models in hardware 
can be envisioned that involves a parallel implementation of 
computations involved in inference and learning. It could lead 
to highly efficient cognitive reasoning machines at nanoscale 
in terms of area, power and performance, compared to 
conventional implementations used today.  

DISCLAIMER 

TABLE II. COMPARISON OF BOOLEAN VS. PROBABILITY ARITHMETIC COMPOSER FRAMEWORK FOR IMPLEMENTING LIKELIHOOD ESTIMATION  

Likelihood Estimation Operation for Bayesian Inference Area (μm2) Active 
Power (mW) 

Latency (μs) 

Computation Memory 
Access 

45nm CMOS Boolean: Four 
array-based multiplier modules 

4-bit Multipliers w/ 
Resolution 1/8 1920 2.92 0.0005 

10 5-bit Multipliers w/ 
Resolution 1/16 3080 4.4 0.00065 

Probability Arithmetic Composer: 
Four Multiplication Composers 

Composers w/ Resolution 
1/10 24.32 0.016  0.144 NA 

               Note: Memory access latency estimated based on state-of-the-art flash solid state drive read latency. 
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Any opinions, findings, and conclusions or 
recommendations expressed in this material are those of the 
authors and do not necessarily reflect the views of the National 
Science Foundation. 
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