
Combining Compiler and Runtime IPC Predictions
to Reduce Energy in Next Generation Architectures∗

Saurabh Chheda
BlueRISC, Inc.

Massachusetts, USA

saurabh@bluerisc.com

Osman Unsal
Intel Research Center

Barcelona, Spain

osmanx.unsal@intel.com

Israel Koren
koren@ecs.umass.edu

C. Mani Krishna
krishna@ecs.umass.edu

Csaba Andras Moritz
moritz@ecs.umass.edu

The Department of Electrical & Computer Engineering
University of Massachusetts, Amherst

Massachusetts, USA

ABSTRACT
Next generation architectures will require innovative solu-
tions to reduce energy consumption. One of the trends we
expect is more extensive utilization of compiler information
directly targeting energy optimizations. As we show in this
paper, static information provides some unique benefits, not
available with runtime hardware-based techniques alone. To
achieve energy reduction, we use IPC information at vari-
ous granularities, to adaptively adjust voltage and speed,
and to throttle the fetch rate in response to changes in ILP.
We evaluate schemes that are based on static IPC, runtime
IPC and also combined, hybrid approaches.

We show that IPC-based adaptive voltage scaling schemes
can reduce energy consumption significantly, but the ap-
proach that also uses static IPC information in combination
with runtime IPC, better captures program ILP burstiness
and helps meet applications’ target performance: an impor-
tant criterion in the real-time domain. We have found that
static IPC-based fetch-throttling works very well, in most
cases performing similarly or better than hardware-only run-
time IPC-based schemes. Overall, static IPC based resource
throttling alone can save up to 14% energy in the proces-
sor with less than 5% IPC degradation. The hybrid scheme

∗This work was supported in part by National Sci-
ence Foundation under the projects NSF/CCR:015516 and
NSF/ITR:0205212. This work was done when Saurabh
Chheda and Osman Unsal were at The University of
Massachusetts, Amherst. Saurabh Chheda is now with
BlueRISC, Inc., Hadley, Massachusetts - 01035, USA. Os-
man Unsal is now with Intel Barcelona Research Center,
Barcelona, Spain.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CF’04, April 14 – 16, 2004, Ischia, Italy.
Copyright 2004 ACM 1-58113-741-9/04/0004 ...$5.00.

saves somewhat more energy but at the expense of higher
performance degradation than the static-only approach. In
fact, we obtain the lowest IPC degradation with the static
IPC-based scheme.

Categories and Subject Descriptors
C.4.3 [Computer Systems Organization]: Computer Sys-
tem ImplementationMicrocomputers[Microprocessors]

General Terms
Instruction Level Parallelism, Fetch Throttling, Adaptive
Voltage Scaling

Keywords
Low power design, compiler architecture interaction, instruc-
tion level parallelism, fetch throttling, adaptive voltage scal-
ing

1. INTRODUCTION
In the past decade microprocessor performance has wit-

nessed phenomenal advances. The rate of increase in power
and energy dissipation has been, however, much higher than
that of performance. This increases demands on battery
capacity in mobile applications and makes the problem of
heat dissipation more challenging. Processors are, in fact,
becoming so power-hungry that reducing their power con-
sumption without significantly degrading their performance
has become a major focus of microprocessor vendors.

This paper describes a different approach to address this
problem by evaluating tightly integrated compiler architec-
ture techniques. Specifically, we address chip-wide power
and energy reduction in processors based on instructions
per cycle (IPC) information. We use statically estimated
IPC information and runtime predicted IPC, to adaptively
adjust voltage and speed, and to throttle the fetch rate in
response to changes in ILP. Our goal is to evaluate a variety
of schemes based on static IPC, runtime IPC, and hybrid
solutions. We show that by adding static IPC information

240

we can often provide significant benefits - not available with
runtime IPC based techniques alone.

1.1 Instructions per Cycle
IPC is a measure of instruction level parallelism (ILP) in

the program. IPC can be predicted at runtime or estimated
at compile time. There are fundamental differences between
the two approaches.

Predictions of IPC at runtime are generally made by ob-
serving the IPC over a certain window and then assuming
that this will continue to hold over some future interval. If
we have programs whose IPC is stable for long periods of
time, this approach works well. On the other hand, many
programs exhibit irregular or bursty IPC behaviour at the
chosen window size: for these, runtime predictions are often
wrong. One can always increase the sensitivity of runtime
methods to rapid IPC changes, by shortening the window
over which observations and predictions are made. This,
however, often comes at a higher overall performance/power
cost, especially when IPC is used to guide resource manage-
ment such as in voltage scaling.

Static IPC is a compile-time estimate of the actual IPC
based on program analysis. Static IPC could therefore pro-
vide an indication of a sharp change in ILP (or ILP bursti-
ness). A source of inaccuracy in static IPC is due to the com-
piler’s inability to capture dynamic effects, such as branch
prediction errors and cache misses. Another difference be-
tween static and dynamic IPC is that static IPC is typi-
cally estimated for a program phase (e.g., basic block, loop)
rather than a fixed number of instructions. This results in
a variable and application-dependent window size.

1.2 Contributions of this Paper
As noted, there are apparent advantages and disadvan-

tages to both IPC estimates. While static IPC is a good
indicator of ILP burstiness, runtime IPC can be more accu-
rate when there is no change in ILP. When used for resource
management, an accurate IPC is essential to avoid exceed-
ing application target performance (by for example slowing
down the processor too much). This is especially important
in real-time applications.

Our objective is to provide a comprehensive study of using
static and dynamic IPC information in the context of energy
saving techniques. We explore a variety of schemes including
hybrid ones. This paper expands on our initial work on
static IPC prediction based fetch throttling [33], that for the
first time, evaluated the usefulness of static IPC predictions
for energy optimizations.

The IPC based framework in this paper is used in two
energy optimization contexts: (1) we adjust voltage, speed,
and the granularity of voltage scaling, in response to changes
in ILP; and (2) we control the fetch rate in response to
changes in ILP. The first optimization provides energy sav-
ings by running the processor at a lower speed and voltage
when there is slack predicted compared to the target perfor-
mance or application deadline. Speed and voltage is contin-
uously adjusted as a function of predicted IPC. The second
optimization provides energy savings by avoiding unneces-
sary instruction fetches and unnecessary switching activity,
in program phases with low predicted ILP.

Some of the key contributions and insights in this paper
include:

• We develop and evaluate a suite of adaptive techniques,

for voltage, speed, and resource adjustments, leverag-
ing static and/or dynamic IPC information, as a co-
herent strategy for chip-wide energy reduction in the
processor.

• We develop new compiler techniques, including com-
piler driven static IPC estimation schemes at various
program granularities, from basic blocks to loop and
procedure levels. Our static IPC estimation approach
is based on monotonic dataflow analysis and simple
heuristics, performed at various program granularities
in compiler backends.

• We develop a static IPC prediction scheme and a hy-
brid IPC-based scheme, and compare them with known
runtime schemes. We use the static IPC prediction
scheme to drive our fine-grained fetch-throttling energy-
saving heuristic. We have experimented with a variety
of architectural configurations using multimedia and
Spec 2000 benchmarks. We obtain up to 14% total
energy savings in the processor with generally little
performance degradation. Moreover, this scheme is the
one that has the smallest IPC degradation of all the
studied schemes. In general, we have found that static
IPC-basedfetch-throttling works very well if preserv-
ing performance is important. We investigate whether
dynamic factors such as cache misses, branch predic-
tion and pipeline depth would dilute the efficiency of
our static IPC-prediction-based heuristic. We find the
efficiency variation to be small.

• As expected, IPC-based voltage scaling is an efficient
way to adjust energy to match target performance in
case there is a slack, i.e., when the application does
not need all of the performance provided by the su-
perscalar processor. We have found that the various
static and/or dynamic schemes are comparable in en-
ergy savings, but that the target performance is often
not met with hardware-only schemes for bursty appli-
cations. By contrast, the voltage scaling scheme that
uses static information about program burstiness has
been successful in preserving applications’ target per-
formance.

1.3 Organization of Paper
The rest of this paper is organized as follows. Section 3

discusses compiler and architectural implementation issues
related to our Static-IPC prediction scheme and the experi-
mental setup. The energy saving heuristic for the IPC-based
Adaptive Voltage Scaling and IPC-based Fetch Throttling
is explained in Section 4. Our experimental results are pre-
sented in Section 5. In Section 6, we discuss related work
and comment on its relevance to this paper.

2. MOTIVATION
To determine which processor blocks are going to be ma-

jor power drains and thereby choose which sections of the
processor to apply our energy saving methods to, we con-
ducted a preliminary study. We analyzed the percentage of
energy contribution of different blocks for three architectural
configurations. See Figure 1a. Following [6], we assume that
clock power consumes a constant ratio of the power across
the components of the chip. The results show the average
for 8 multimedia applications from the Mediabench suite.

241

The details of the benchmarks are explained in Section 5.2.
We scale every resource accordingly; the first configuration
is a simple single-issue in-order machine, the second is an
8-way out-of-order configuration and the third is a 32-way
machine. The last configuration, while impractical, gives an
idea of the power distribution if one were to have essentially
unlimited resources. We include this as an asymptotic case.
Note that the fetch- and issue-related logic, the L1 data
cache and the ALUs become dominant as the complexity of
the architecture is increased. These results agree with the
findings in Zyuban and Kogge’s study [35]. In Figure 1b.,
we present a snapshot from the execution profile of the Spec
2000 application equake. The graph shows the actual IPC
against our compiler-driven static IPC prediction as aver-
aged over windows of 10000 cycles. Since predicted IPC
provides a reasonably accurate estimate of actual IPC, we
are motivated to use the static prediction for energy savings
by throttling resources when they are not needed.

0

5

10

15

20

25

Rename Reg.File D−Cache ALU

Pe
rc

en
t o

f
E

ne
rg

y

Br.Pred. Ld.St.Que. I−Cache FALU

In−Order

8−Way

32−Way

Instr.Que.
L2−Cache

(a) Percentwise energy consump-
tion of major processor blocks

. .

0

0.5

1

1.5

2

2.5

3

40100 40120 40140 40160 40180 40200

Predicted IPC

Actual IPC

(b) Predicted versus actual IPC for
the equake Spec 2000 application

Figure 1: Where and how to save energy

3. STATIC IPC-ESTIMATION
In our implementation, we only consider true data depen-

dencies (Read-After-Write or RAW) to check if instructions
depend on each other. As mentioned in [27], a major limi-
tation of increasing ILP is the presence of true data depen-
dencies. Tune et al. [32] also remark that the bottleneck for
many workloads on current processors is true dependencies
in the code. Although the impact of true dependencies can
be mitigated through the use of value speculation, the en-
ergy overhead of value speculation hardware has been found
to be prohibitively high. Therefore, we consider a standard,

non-value-speculating, out-of-order, architecture in our ex-
periments. For this architectural configuration, antidepen-
dencies (Write-After-Read or WAR) or output dependencies
(Write-After-Write or WAW) could be eliminated by register
renaming, but even infinite resources cannot eliminate true
dependencies. However, note that the compiler-driven fetch
throttling framework is equally applicable to an architecture
with value speculation: only the compiler-level passes need
to be replaced.

It is also possible to handle false dependencies in the com-
piler passes: this would be a viable option if the processor
were severely constrained in its register renaming resources.
However, contemporary processors usually have enough re-
sources to eliminate most false dependencies. Another pos-
sible use for compiler-driven ILP estimation could be the
static analysis and determination of the Functional Unit
(FU) needs of the application. A back-end energy-saving
heuristic would then dynamically turn off unnecessary FUs
(such as ALUs) during statically predicted periods of low-
FU usage. Of course, there are other, dynamic, factors that
influence IPC, such as branch prediction and cache misses.
Surprisingly, in our experiments, we found that the impact
of those dynamic components on the efficiency of our static-
only approach is actually smaller than we expected.

Another issue that needs to be discussed is the impact of
the Out-of-Order architecture on loop-level parallelism. In-
tuitively, if the instruction window is large enough, intruc-
tions across loop iterations could be scheduled out-of-order
creating an effect that is similar to software pipelining, which
is not yet captured in our compilation framwork. However
this is not the case: see Figure 2. Here, for Mediabench and
Spec200 applications (see Section 5.2), a very large instruc-
tion window of size 1K does not influence the IPC. We next
discuss the compiler and architectural level issues related to
static IPC-estimation.

3.1 Compiler-Level Implementation
We statically determine true data dependencies using an

assembly-code level data dependency analysis. The advan-
tage of doing the analysis at this level instead of at the
source code level is that the instruction level parallelism is
fully exposed at the assembly code layer. Our post-register
allocation scheme uses monotone data flow analysis, similar
to [3]. However, our scheme has two important distinctions:
first, we use monotone data flow analysis to identify the data
dependencies, not for instruction scheduling. Second, our
method is speculative, whereas [3] requires complete cor-
rectness. We identify data dependencies at both registers
and memory accesses. Register analysis is straightforward:
the read and written registers in an instruction can be es-
tablished easily, since registers do not have aliases. The
determination of reaching uses is achieved using the well-
known algorithm in [2]. However, for memory accesses, this
is not the case and there are three implementation choices:
no alias analysis, complete alias analysis, or alias analysis
by instruction inspection. No alias analysis is too specu-
lative for IPC estimation: it assumes that a memory load
instruction is always dependent on a preceding store instruc-
tion. This model would apply if there were no load/store
queues or multiple memory ports in the processor but mod-
ern out-of-order architectures are typically equipped with
those resources. Another alternative is doing full alias anal-

242

0

0.5

1

1.5

2

2.5

3

3.5

4

Adpcm Epic Jpeg Mpeg G721 Mesa Rasta Gsm

IP
C

Size=32
Size=128 Size=1024

(a) Mediabench Applications

0

0.5

1

1.5

2

2.5

3

3.5

4

Vpr Parser Mcf Ammp Art Equake Gap Bzip2

IP
C

Size=32

Size=1024

Size=128

(b) Spec2000 Applications

Figure 2: The impact of instruction window size on
IPC. The processor resources have been chosen large
enough to highlight the impact of changing instruc-
tion window size. We assume an 8-way issue with 10
FU’s, 128K L1 D and I-Caches,64K bimodal + 64K
Gshare with 64K selector hybrid branch predictor.

ysis, although it requires considerable overhead to imple-
ment, this option would ensure full correctness. Still, we
have found that our approximate and speculative alias anal-
ysis by instruction inspection provides ease of implementa-
tion and sufficient accuracy. In this scheme, we distinguish
between different classes of memory accesses such as static
or global memory, stack and heap. We also consider indexed
accesses by analyzing the base register and offset values to
determine if different memory accesses are referenced. If this
is the case, we do not consider this pair of read-after-write
memory accesses as true dependencies. We follow with a
more detailed description of the implementation.

We use SUIF/Machsuif as our compiler framework. SUIF
does high-level passes while Machsuif does machine-specific
optimizations. Our IPC-estimation is at the basic block or
loop level.

3.2 Architectural-Level Implementation
We exploit the statically-estimated IPC for fetch-throttling

and voltage frequency scaling. We present a suite of IPC-
driven schemes for fetch throttling and voltage scaling that
use statically-estimated (i.e. compile-time) IPC and/or dy-
namic (i.e. runtime) IPC. Central to all schemes is the use
of compile-time estimated IPC, either alone or in conjunc-

tion with other runtime metrics, to drive our energy saving
heuristics.

When code is generated for static or hybrid fetch throt-
tling, an assembler level pass examines the estimated IPC to
assess the need for fetch throttling. If the estimated IPC is
below a threshold, established at compile-time, a throttling
flag is inserted.

In a similar fashion, when code is generated for static or
hybrid voltage scaling, an assembler level pass examines the
variation in estimated IPC over basic blocks to assess the
need for voltage change and also estimates the degree of volt-
age scaling. For example, if the variation in estimated IPC
from one basic block to the next exceeds a threshold (also
fixed at compile-time), a voltage scaling flag is inserted. The
degree of change in estimated IPC over basic blocks is used
to decide the degree of voltage scaling (i.e. the amount by
which voltage is raised/lowered). The granularity at which
IPC is estimated can be changed, from basic block level to
loop level, or even higher.

In the static or hybrid voltage scaling scheme, the num-
ber of bits in the voltage scaling flag depend on the number
of voltage levels available to the processor core. If the core
voltage of a processor can switch between four levels, then
the voltage scaling flag requires two bits to encode the de-
sired voltage level. For a hybrid voltage scaling scheme, a
single bit is enough to indicate if the core voltage needs to
be raised or lowered. Note that the fetch throttling flag re-
quires only a single bit. If enough flexibility exists in the
ISA of the target processor, then the flag can be inserted
directly into the instructions eliminating the need for a spe-
cial instruction. In our experiments, we take this approach
and also consider the additional power dissipation stemming
from this extension: see Section 5.1. If there is not enough
flexibility in the ISA, then special flag instructions should
be added. This may raise the question of increased code
size due to the additional instructions. The voltage scaling
related instructions are typically at a coarser granularity so
they don’t affect performance significantly.

We have analyzed the worst-case code size increase due to
our approach: assuming that every IPC-estimation marker
results in a throttling hint. This is unrealistic but gives an
upper bound. Figure 3 shows the percentage increase for
the Mediabench and Spec 2000 applications. The average
code size increase is modest at 5.1%.

4. ENERGY-SAVING FRAMEWORK

4.1 IPC-based Fetch Throttling
The fetch-throttling scheme latches the compiler-supplied

predicted IPC at the decode stage. If the predicted IPC is
below a certain threshold, then the fetch stage is throttled,
i.e., new instruction fetch is stopped for a specified duration
of cycles. The rationale is that frequent true data dependen-
cies which are at the core of our IPC-prediction scheme, will
cause the issue to stall. Therefore, the fetch could be throt-
tled to relieve the I-cache and fetch/issue queues and thereby
save power without paying a high performance penalty. We
have done extensive experiments to determine the threshold
value and the duration. The results suggested that a thresh-
old of 2 and duration of 1 is the best choice. That is, we
stop instruction fetch for 1 cycle when we encounter an IPC
prediction that is at most 2. This heuristic is similar to the
front-end throttling scheme by Baniasadi et al. [7]. Besides

243

Pe
rc

en
t C

od
e

Si
ze

 I
nc

re
as

e

Epic Jpeg Mpeg G721 Mesa Rasta Gsm

Benchmarks

Vpr Parser Mcf Ammp Art Equake Gap Bzip2

 16

 14

 12

 10

 8

 6

 4

 2

 0
Adpcm

Figure 3: Percent code size increase due to ISA augmentation with IPC-marker instructions. See Section 5.2
for details of the particular benchmarks.

Fetch Unit Decode Unit

CLK

CLKQ

VDDGND

GATEH

GATEL

Throttling Flag

Figure 4: Architectural implementation of front-
end throttling. GATEH is asserted when there is
a throttling flag.

.

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

A
ct

ua
l I

PC

10000 Instructions 500 Instructions
2.5

85200 85220 85240 85260 85280 85300

Figure 5: Coarser versus finer granularity.

using a compiler-directed approach; our scheme uses static
‘future-information’ to predict future behavior, whereas [7]
uses the past-behavior to predict future behavior. We in-
clude the architectural implementation of our energy saving
heuristic in Figure 4. Here, when the predicted IPC is 1 or 2,
GATEL is asserted and the fetch stage is throttled by using
a clock gater. To prevent glitches, a low-setup clock gater
is used which allows the qualifier to be asserted up to 400ps
after the rising clock edge without producing a pulse [20].

We preferred a fine-grained heuristic over a coarse-grained
one. Coarse-grained heuristics usually average available ILP-
information over a large number of cycles, which can lead
to loss of accuracy. Consider Figure 5, where a slice of the
Epic multimedia benchmark is shown. The curves show the
actual IPC as averaged over 10000 (coarser granularity) and
500 (comparatively finer granularity) cycles, respectively. It

is evident that a coarser granularity scheme would be less
accurate than one using a comparatively finer granularity
scheme. However, we should note that our compiler-layer
IPC prediction framework would work equally well with a
coarse granularity scheme as well.

In addition to the static IPC-driven scheme for fetch throt-
tling, we have developed one hybrid scheme for fetch throt-
tling that combines the static-only scheme with runtime,
front-end fetch-throttling schemes by Baniasadi et al. Our
energy saving heuristic in the hybrid schemes uses the stat-
ically inserted fetch-throttling flags in conjuction with the
runtime mechanisms proposed by Baniasadi et al. to throt-
tle the fetch unit.

4.2 IPC-based Adaptive Voltage Scaling
Modern electronic systems run workloads whose perfor-

mance demands typically vary and cannot be predicted in
advance. For such systems, voltage scaling is ideal since we
can change voltage (and hence frequency) dynamically to
meet performance goals. As energy is decreased quadrati-
cally by reduced voltage, this is an efficient way to improve
energy efficiency.

Changing voltage with variation in IPC is an attractive so-
lution to reduce the energy consumption without sacrificing
the performance goals. An IPC-driven voltage adaptation
requires, in order to maintain goal performance, to continu-
ously adjust supply voltage and speed in response to the IPC
variation presented by the application. When the amount of
IPC seen for a code fragment is predicted to be lower than
the average IPC required to meet the performance target,
we could raise the supply voltage to make up for the limited
IPC. In code fragments with higher IPC, the supply voltage
can be similarly reduced such that the processor can run
slower, save energy, and still achieve its target performance.

Given a performance goal, such as a specified MIPS rate
(or an average application IPC rate at a given voltage and
frequency), we propose a suite of voltage scaling heuristics
that use static and runtime IPC to make voltage scaling de-
cisions. At the end of a selected window, voltage and speed
adjustments are made depending on the IPC and target per-
formance.

A hardware-only, runtime IPC based dynamic voltage scal-
ing system calculates the observed IPC over the previous
window as a MIPS rate, and calculates a new frequency
(and hence, voltage level) for the next window to meet the
target MIPS rate.

fnew = fold × MIPSgoal

MIPSobserved
(1)

244

If fnew is high or low enough, the processor selects a new
appropriate voltage level (e.g., from the voltage points avail-
able in the processor) that achieves a larger or equal fre-
quency as the desired frequency fnew .

The hardware-only, dynamic voltage scaling scheme is
based on constant-size intervals. At every interval, control is
transferred to a software routine that computes the runtime
IPC of the last interval and then makes a decision to scale
voltage for the current interval. This incurs a performance
penalty on every interval due to transfer of control to the
software routine, irrespective of whether voltage is changed
or not. A fixed interval-based scheme mispredicts the volt-
age on a sudden variation in ILP since its decision is based
on past IPC information. In this paper, we also use static
IPC to complement the runtime predicted IPC as a measure
of the actual program IPC.

When the voltage scaling heuristic employs static IPC,
in addition to runtime IPC, this ILP misprediction can be
avoided. Static IPC, although possibly an optimistic esti-
mate, gives a good indication of the relative variation of IPC
in a current interval compared to a previous one. Thus, a
voltage scaling scheme that also employs static IPC is ex-
pected to be better suited to handle bursts in IPC (and thus
bursty applications).

In our solution, we augment the hardware-only IPC scheme
with statically-obtained voltage scaling hints. At every compiler-
determined program interval (such as loop boundaries), spe-
cial hardware compares the current and previous compiler-
introduced voltage scaling flags during runtime. Any differ-
ence between these flags is an indication of change in IPC
(predicted by the compiler) and hence a hint that a voltage
scaling decision needs to be made. Clearly, if the voltage
scaling decision were made based on the runtime IPC of
the previous window (such as in a hardware-only solution),
it would often result in an incorrect change in voltage. In
case there is an IPC burst predicted by the compiler, the
static IPC estimation is used to make the decision (the first
time) rather than the runtime IPC of the previous window.
When there is no burstiness expected, our compiler-enabled
scheme uses the actual runtime IPC of the previous window.
Note that the window size is program variable and not fixed
(such as in the scheme based on runtime IPC alone).

5. EXPERIMENTS

5.1 Architectural Simulator Setup
The system model is a typical out-of-order superscalar

processor. See Figure 6 for the modeled processor blocks.
Note that the baseline includes the shaded throttling logic
block; which we explained in Section 3.2.

Free
Register
List

L1 I−Cache

Fetch

Instruction
Fetch
Queue

Decode Register
Rename

Branch
Predict

Functional
Units

Buffer
Reorder

Instruction
Queue

Load/Store
Queue

Bypass

Register
File

L1 D−Cache

Retirement

L2 Cache

Figure 6: A superscalar out-of-order core.

The baseline architecture reflects the state-of-the-art in
current processor designs. Table 1 contains a description of
the baseline parameters. The trend is towards wider issue
as evidenced by the proposed 8-way Alpha 21464, and the
recently introduced dual 4-way issue processors such as the
POWER4 from IBM [4] and MAJC 5200 from SUN [21].
Henry et al. [16] propose novel circuits that scale to 8-way
issue; they also present results for a 128-entry issue/reorder
buffer. An actual implementation of a large instruction
queue is the 1.8GHz 64-entry instruction window buffer by
Leenstra et al. [23]. Based on the preceding analysis, we
selected an 8-wide issue, 128 entry instruction queue as our
baseline.

We use Wattch [8] to run the binaries and collect the

Processor Speed 1.5GHz
Process Parameters 0.18 µm, 1.75V
Issue Out-of-order
Fetch, Issue, Decode
Commit Width 8-way
Fetch Queue Size 32
Instruction Queue Size 128
Branch Prediction 2K entry bimodal
Int. Functional Units 4 ALUs, 1Mult./Div.
FP Functional Units 4 ALUs, 1Mult./Div.
L1 D-cache 128Kb, 4-way
L1 I-cache 128Kb, 4-way
Combined L2 cache 1Mb, 4-way
L2 cache hit time 20 cycles
Main memory hit time 100 cycles

Table 1: Baseline Parameters.

energy results. Wattch is based on the Simplescalar [9]
framework. Our baseline processor configuration has 128
entries in its instruction queue, therefore we use a 128 ele-
ment RUU (Register Update Unit). RUU is a simple and
elegant scheme [31], adapted by Simplescalar, to facilitate
out-of-order superscalar execution. The RUU includes the
instruction queue as well as the physical register files and
the reorder buffer. We use a size of 64 for the Load-Store
Queue (LSQ). In Wattch, we use the activity-sensitive power
model with aggressive conditional clocking. We use a 0.18
µm, 1.0Ghz, 1.75V process. We extended the power dis-
sipation model in Wattch so that it accounts for the extra
power overhead due to the 1-bit throttling flag field decoding
in the dispatch stage. The static IPC-based voltage scaling
is done with inserted special instructions at a coarser gran-
ularity (e.g., loop nest level).

To extract the maximum available ILP and therefore get
higher IPC, some contemporary wide-issue processor designs
such as the AMD AthlonXP [19] use short pipelines; we
take a similar approach and use the default 5-stage pipeline
structure in our architectural simulator (fetch, dispatch or
decode, issue, writeback, commit) as the baseline. However,
other recent competing processors use deeper pipelines to
achieve higher clock rates at the expense of IPC. Examples
of these are the 20-stage Intel Pentium 4 [17] and the 12-
stage AMD Hammer [34]. Therefore, we also model and
analyze the impact of a deeper 11-stage pipeline (2 fetch, 4
decode, 2 issue, 2 writeback, 1 commit stages) in our sen-
sitivity analysis. The Simplescalar pipeline stages are ex-
tended from 5 to 11 and a branch penalty of 10 cycles is
assumed for this analysis. We also extended the Wattch
power models to account for the additional pipeline stages.

245

For our voltage and frequency scaling experiments, we re-
tuned Wattch to support mulitple levels of core voltages and
corresponding frequencies. Some current processors support
dynamic voltage scaling, including Transmeta’s TM 5400,
Intel’s XScale, and AMD’s K6-IIIE+. We have adapted
Wattch to support five levels of voltage (and corresponding
frequency), as in Intel’s XScale 2.

Frequency (MHz) Core Voltage (V)
200 0.7
466 1.0
600 1.2
800 1.4

1,000 1.75

Table 2: Core Voltage and Frequency of Operation for

Intel XScale

Though it is possible to dynamically change voltage and
clock speed, current systems suffer from a high latency penalty
for changing voltage. For every change in voltage, the pro-
cessor must drain the instruction pipeline, and request a
change in voltage. During the period when voltage is chang-
ing and stabilizing, the processor is in the idle state. This
latency can be as high as 75-150µs (for the AMD K6-IIIE+),
and is dependent on the type of voltage regulation used. Us-
ing an external DC-DC regulator to change voltage is com-
mon and comprises of bulk of the latency penalty. Newer
DC-DC regulators/converters can switch between voltages
in less than 5µs, thereby bringing down the latency penalty
for switching voltage. Another viable alternative is to pro-
vide multiple supply voltages on-chip to choose from. Mul-
tiple supply voltages already exist on many CPU’s, that
reduces the latency penalty significantly.

5.2 Benchmarks
We use the Mediabench[22] and Spec CPU2000[1] bench-

marks in our experiments. We randomly select eight appli-
cations from each suite: see Table 3.

5.3 IPC Based Fetch-Throttling Results
We first present our results for the baseline parameters.

See Figure 7a for the Spec 2000 applications. For the Spec
2000 benchmarks in this architectural configuration, com-
piler IPC-estimation driven front-end throttling yields ex-
cellent results: on the average, we get 8% processor energy
savings with a performance degradation of 1.4%. As shown
in Figure 7b, for the Mediabench applications we get 11.3%
average energy savings, however this comes at the price of
an average 4.9% performance degradation. This is due to
the fact that multimedia programs have typically a higher
ILP than general purpose applications such as Spec 2000:
although the low IPC estimated instructions are stalled at
the issue queue, later and higher IPC instructions could have
all their operands available and issued out-of-order if there
is sufficient ILP available. This implies that for this con-
figuration running media benchmarks, a coarser-granularity
scheme or a hybrid static/dynamic heuristic could yield bet-
ter results.

To present how fetch-throttling saves resources, we in-
clude results on the percentage decrease of the fetch and
instruction queue occupancy: See Figure 8. Notice that
the front-end throttling scheme decreases the average queue
occupancy of the back-end issue queue as well. For Medi-

abench and Spec, the time that the queues are full is de-
creased by 28.6% and 14.7% for fetch; and 17.2% and 7.7%
for issue, respectively. The average queue size is decreased
by 19.2% and 10.4% for fetch; and 4.1% and 2.0% for issue,
respectively.

We now examine the percentage of energy savings per
processor block: see Figure 9. As expected, the block with
the highest overall savings is the fetch stage. However, note
that even the issue stage benefits from fetch-throttling.

5.3.1 Comparison With Dynamic-Only Architectural
Schemes

We now compare the static fetch-throttling scheme to
two previously proposed microarchitectural-level front-end
throttling schemes: Decode/Commit Rate (DCR) and De-
pendence Based (DEP) heuristics by Baniasadi et al. [7].
Both DCR and DEP are also fine-grained schemes; however
they solely rely on dynamic information. DCR throttles
fetch when the number of instructions passing through de-
code exceeds significantly the number of instructions that
commit. As such DCR exposes a purely dynamic prop-
erty by inhibiting fetch during branch mispredictions. DEP
analyzes the decoded instructions every cycle and throttles
fetch if the number of dependencies exceeds a threshold of
half the decode width. Similar to the static fetch-throttling
scheme, DEP is dependency-based; however DEP makes
use of run-time information while the static fetch-throttling
scheme utilizes only compile-time information. We imple-
mented DCR and DEP following the guidelines in [7]. The
performance results are given in Figure 10. By contrast
with DCR and DEP, our scheme substantially preserves the
original performance of the applications. The energy results
in Figure 11 indicate that on the average, the static fetch-
throttling scheme is as energy-efficient as DCR. However, for
some applications such as the ADPCM, DCR saves more en-
ergy. Note that this energy savings comes at the expense of
performance, i.e., DCR trades off performance for energy.
Compared to the static fetch-throttling scheme, DEP saves
more energy however trades off performance. This becomes
apparent when we compare the energy-delay signatures of
the static fetch-throttling scheme with DCR and DEP in
Figure 12; The static fetch-throttling scheme is substan-
tially more energy-delay efficient, especially so for media
applications.

5.3.2 Sensitivity Analysis for Fetch-Throttling
In this section, we examine the impact of resource and

control dependencies on Cool-fetch. We start with resource
dependencies and analyze the effects of cache misses. Then,
we experiment with a smaller instruction queue size. Fi-
nally, we test the impact of using a larger branch predictor
and also present an extended pipeline experiment which is
essentially a test of control dependencies since it amplifies
branch misprediction penalties. We now describe the results
of each experiment in turn.

One would expect that since our energy-saving heuris-
tic depends on a static approach, dynamic program behav-
ior such as cache misses would dilute the efficiency of our
method. Somewhat surprisingly, this is not the case. In
Table 4, we present the data cache miss rates for the Spec
2000 benchmarks. The results are in agreement with data
gathered from a recent Spec 2000 cache performance anal-
ysis [11]. Consider the very high miss rates for the MCF,

246

Benchmark Description
ADPCM Adaptive differential pulse code modification audio coding
EPIC Image compression coder based on wavelet decomposition
G721 Voice compression coder based on G.711, G.721 and G.723 standards
GSM Rate speech transcoding coder based on the European GSM standard
JPEG A lossy image compression decoder
MESA OpenGL graphics clone: using Mipmap quadrilateral texture mapping
MPEG Lossy motion video compression decoder
RASTA Speech recognition front-end processing
BZIP2 Compression
GAP Group theory, interpreter
MCF Combinatorial optimization, single-depot vehicle scheduling
PARSER Word processing, synthetic parser of English
VPR CAD FPGA circuit placement and routing
AMMP Computational chemistry
ART Neural network for object recognition in a thermal image
EQUAKE Simulation of seismic wave propagation in large valleys

Table 3: Mediabench and Spec CPU2000 benchmarks used.

0

2

4

6

8

10

12

14

16

Vpr Parser Mcf Ammp Art Equake Gap Bzip2

Pe
rc

en
t(

%
)

Decrease in IPC
Processor Energy Savings

(a) Spec 2000

2

4

6

8

10

12

14

Adpcm Epic Jpeg Mpeg G721 Mesa Rasta Gsm

Pe
rc

en
t(

%
)

Decrease in IPC Processor Energy Savings

(b) Mediabench

Figure 7: Impact of compiler IPC-estimation driven fetch throttling

AMMP and ART. This suggests that extraction of available
ILP is affected by dynamic memory performance in those
benchmarks. Yet, as seen from Figure 7b, the performance
degradation due to our scheme for those applications is not
worse compared to other, lower miss-rate, applications.

We now present the results for more constrained resources.
In Figure 13, the fetch and instruction queues are 8 and 32
instructions, respectively. For the Spec 2000 benchmarks,
we again get excellent results: 6.13% energy savings with
0.37% performance penalty. For the Ammp and Bzip2 ap-
plications, we even have a slight performance gain with our
compiler-directed throttling heuristic. By fetch-throttling at
times of low-ILP, the branch prediction can be more effec-
tive. Indeed, for those applications the ratio of committed
to fetched instructions is higher for the throttled configura-
tion. This in turn leads to slightly increased performance.
For the multimedia applications, we achieve good results for
this configuration: 8.5% average energy savings with a 1.3%
performance penalty. To check the narrow-issue case, we
also replicated our experiments for a 4-way issue configura-
tion, the results are similar and not included here for the
sake of brevity.

For branch mispredictions, we experimented with a larger
and better hybrid branch predictor (64K bimodal + 64K
Gshare with 64K selector). We use the Spec applications
for this experiment since the branch prediction rates of Spec
applications are typically lower compared with the loop-
dominated media applications and thus can benefit more
from a larger branch predictor. Compared with the unthrot-

tled case with the same branch predictor configuration, the
2K bimodal predictor results in 1.4% average performance
degradation and 8% energy savings, while the hybrid pre-
dictor has 1% performance degradation and 7.5% energy
savings.

As discussed before, we analyzed the impact of increasing
the pipeline depth to 11. The results are shown in Figure
14. The deeper pipeline allows an exploration for different
threshold and duration parameters. Figure 14a and 14b
show the case with a throttling threshold of 2 and duration
of 1 cycles. Figure 14c and 14d are for a threshold of 2
and an expanded throttling duration of 2 cycles. Figure 14e
and 14f show the impact of using a throttling duration of
1 cycle, but a threshold value of 3. There are interest-
ing tradeoffs here. The 1 cycle throttling duration case
gives the least performance degradation but with modest
energy savings. The 2 cycle duration case has the highest
energy savings, however the performance penalty is larger,
especially for the media applications. The threshold of 3
and delay of 1 cycle gives good energy savings results with a
small drop in performance, clearly this case is the optimum
among the three policies studied. The throttling duration
of 2 cycles is long for wide-issue architectures, and requires
substantial changes to the throttling logic. However, using
the higher threshold of 3 with a duration of 1 cycle requires
minimal change to throttling logic and is a better match for
a deeper pipeline.

Media applications save more energy through DCR and
DEP, while the static-only Fetch Throttling scheme suffers

247

0

5

10

15

20

25

30

35

40

Adpcm Epic Jpeg Mpeg G721 Mesa Rasta Gsm

Pe
rc

en
t(

%
)

Fetch Issue

(a) Mediabench: Decrease in queues be-
ing full

0

5

10

15

20

25

Adpcm Epic Jpeg Mpeg G721 Mesa Rasta Gsm

Pe
rc

en
t(

%
)

Issue

Fetch

(b) Mediabench: Decrease in average
queue size

0

5

10

15

20

25

30

35

40

Vpr Parser Mcf Ammp Art Equake Gap Bzip2

Pe
rc

en
t(

%
)

IssueFetch

(c) Spec 2000: Decrease in queues being
full

0

5

10

15

20

25

Vpr Parser Mcf Ammp Art Equake Gap Bzip2

Pe
rc

en
t(

%
)

IssueFetch

(d) Spec 2000: Decrease in average
queue size

Figure 8: Percentage Decrease in Fetch and Issue queue sizes.

−20

−10

0

10

20

30

40

50

60

Adpcm Epic Jpeg Mpeg G721 Mesa Rasta Gsm

Pe
rc

en
t(

%
)

Fetch

Clock

Reg. FileIssueDecode

(a) Mediabench

−10

0

10

20

30

40

50

60

Vpr Parser Mcf Ammp Art Equake Gap Bzip2

Pe
rc

en
t(

%
)

Fetch

Decode
Issue

Clock
Reg. File

(b) Spec 2000

Figure 9: Percentage Energy Reduction in Processor Blocks

less performance penalty. For those applications, there-
fore, a combined microarchitectural-compiler heuristic of-
fers to be a promising approach. We developed such a
heuristic that throttles fetch when the statically-estimated
IPC is low, however, additional fetch throttling is applied if
the statically-estimated IPC is high but DCR detects high
decode-to-commit rate. As seen in Figure 15, this scheme
achieves higherer energy savings than static-only fetch throt-
tling scheme with less performance degradation than DCR.

5.4 Voltage Scaling Results
In all the voltage scaling schemes evaluated in this paper,

we save energy by constantly adjusting the processor core
voltage in response to changes in IPC, while still maintaining

target performance. We can save energy when the voltage is
reduced since any decrease in voltage gives quadratic savings
in energy. As mentioned earlier in Section 4.2, to meet target
performance, at each (fixed or compiler determined) window
boundary we adjust the frequency and voltage of the proces-
sor such that the estimated MIPS of the subsequent window
is made equal or slightly larger than the target MIPS.

We first evaluate the contraints that a performance goal
places on the energy savings possible with any adaptive volt-
age scaling scheme. Assuming that we have perfect knowl-
edge of the runtime IPC at the commit stage (i.e., the true
runtime IPC at every cycle is known beforehand), we evalu-
ate if we can obtain any energy savings with adaptive voltage
scaling when the performance goal is close to the maximum

248

0

5

10

15

20

25

30

35

Adpcm Epic Jpeg Mpeg G721 Mesa Rasta Gsm

D
ec

re
as

e
in

 I
PC

 (
%

)

DCR DEP

Static

(a) Mediabench

0

2

4

6

8

10

12

14

Vpr Parser Mcf Ammp Art Equake Gap Bzip2

D
ec

re
as

e
in

 I
PC

 (
%

) DCR

DEP

Static

(b) Spec 2000

Figure 10: Performance of Static Fetch-Throttling versus DCR and DEP.

0

5

10

15

20

25

30

35

Adpcm Epic Jpeg Mpeg G721 Mesa Rasta Gsm

E
ne

rg
y

Sa
vi

ng
s

(%
) Cool−Fetch

DCR

DEP

(a) Mediabench

0

5

10

15

20

25

Vpr Parser Mcf Ammp Art Equake Gap Bzip2

E
ne

rg
y

Sa
vi

ng
s

(%
)

DCR

DEP

Static

(b) Spec 2000

Figure 11: Energy Efficiency of Static Fetch-Throttling (Cool-Fetch) versus DCR and DEP.

−5

0

5

10

15

20

25

Adpcm Epic Jpeg Mpeg G721 Mesa Rasta Gsm

Pe
rc

en
t I

m
pr

ov
em

en
t(

%
)

DEPDCR

(a) Mediabench

−5

0

5

10

15

20

25

Vpr Parser Mcf Ammp Art Equake Gap Bzip2

Pe
rc

en
t I

m
pr

ov
em

en
t(

%
)

DCR DEP

(b) Spec 2000

Figure 12: Energy-Delay Efficiency of Cool-Fetch versus DCR and DEP.

performance available (i.e., performance extracted by the
processor when operating at fixed highest voltage). This is
shown in Figure 16, where we compare the energy and delay
of a fixed-voltage scheme at 1.2V, 600MHz with a voltage
scaling scheme based on true runtime IPC, and a hybrid,
compiler-enabled scheme that uses static IPC obtained at
the basic-block granularity. The goal performance is close
to the performance at the fixed voltage (i.e. 1.2V, 600MHz).
For this experiment we assume ideal clock gating with no
voltage scaling cost.

We can conclude from Figure 16, that if the performance
goal is close to the performance when the maximum perfor-
mance available, even a voltage scaling scheme with perfect
knowledge of the runtime IPC at the commit stage does not

save energy. This can be attributed to two factors: first,
if the goal performance is close to maximum available per-
formance, the processor is running at the highest possible
voltage for the bulk of the execution time and hence getting
energy savings is more difficult, and secondly, the differ-
ent pipeline stages have resource utilization that is different
from the runtime IPC measured at the commit stage which
can result in inaccurate predictions that offset the benefits
that are obtained by lowering the voltage at high IPC levels.
This shows that we cannot expect to get significant energy
savings if there is no (or little) slack. Slack is defined as
the difference between the desired execution time and the
execution time at baseline, fixed, highest voltage and clock
rate.

249

Benchmark Rate Benchmark Rate Benchmark Rate Benchmark Rate
VPR 1.1 PARSER 1.5 MCF 29.2 AMMP 14.3
ART 16.8 EQUAKE 1.1 GAP 0.3 BZIP2 2.0

Table 4: Miss rates for the baseline L1 data-cache (128K, 4 way)

0

2

4

6

8

10

12

14

Adpcm Epic Jpeg Mpeg G721 Mesa Rasta Gsm

Pe
rc

en
t(

%
)

Decrease in IPC Processor Energy Savings

(a) Mediabench

−2

0

2

4

6

8

10

12

Vpr Parser Mcf Ammp Art Equake Gap Bzip2

Pe
rc

en
t(

%
)

Decrease in IPC

Processor Energy Savings

(b) Spec 2000

Figure 13: Compiler IPC-estimation driven fetch throttling for smaller fetch and instruction queues

0

1

2

3

4

Adpcm Epic Jpeg Mpeg G721 Mesa Rasta Gsm

Pe
rc

en
t(

%
)

Processor Energy Savings

Decrease in IPC

(a) Mediabench with throttle thresh-
old of 2 and duration of 1 cycle

Vpr Parser Mcf Ammp Art Equake Gap Bzip2

Processor Energy Savings

Decrease in IPC

(b) Spec 2000 with throttle
threshold of 2 and duration of
1 cycle

0

2

4

6

8

10

Adpcm Epic Jpeg Mpeg G721 Mesa Rasta Gsm

Pe
rc

en
t(

%
)

Processor Energy SavingsDecrease in IPC

(c) Mediabench with throttle dura-
tion of 2 cycles

Vpr Parser Mcf Ammp Art Equake Gap Bzip2

Decrease in IPC

Processor Energy Savings

(d) Spec 2000 with throttle du-
ration of 2 cycles

0

1

2

3

4

5

6

7

8

Adpcm Epic Jpeg Mpeg G721 Mesa Rasta Gsm

Pe
rc

en
t(

%
)

Decrease in IPC

Processor Energy Savings

(e) Mediabench with throttle thresh-
old of 3 and duration of 1 cycle

Vpr Parser Mcf Ammp Art Equake Gap Bzip2

Processor Energy Savings

Decrease in IPC

(f) Spec 2000 with throttle
threshold of 3 and duration of 1
cycle

Figure 14: Results for 11-stage pipeline.

Next we compare the proposed compiler-enabled, called
hybrid, scheme with the hardware-only runtime IPC based
voltage scaling scheme, in the presence of slack (i.e., when
the performance goal is not close to the maximum perfor-
mance). We are particularly interested to see if the static
IPC is useful in predicting ILP burstiness. We show experi-
ments for a slack of 20%; we have found the results for larger
slacks (not included) to be consistent with our findings at

20% slack. We have found that slacks smaller than 10% are
hard to capitalize on due to the reasons explained above.

As mentioned earlier in Section 4.2, the hybrid scheme
uses compile-time generated voltage scaling flags (based on
statically-predicted IPC) to decide the voltage scaling points.
In addition, it uses the runtime IPC of the past window, to
decide the processor core voltage. Voltage is changed based
on static IPC when two consecutive compiler-inserted flags

250

0

5

10

15

20

25

30

35

Adpcm Epic Jpeg Mpeg G721 Mesa Rasta Gsm

E
ne

rg
y

Sa
vi

ng
s

(%
) DEP

DCR
Static

Static+DCR

(a) Energy

0

5

10

15

20

25

30

35

Adpcm Epic Jpeg Mpeg G721 Mesa Rasta Gsm

D
ec

re
as

e
in

 I
PC

 (
%

)

DCR
DEP

Static

Static+DCR

(b) Performance

Figure 15: Comparison between static-DCR and other schemes

N
or

m
al

iz
ed

 E
ne

rg
y

ADPCM D−JPEG D−MPEG EPIC RASTA EQUAKE PARSER
Benchmarks

VPR

 0.5

 1.5

 0

 1

 2
Fixed Voltage: 1.2V, 600MHz

Commit Rate−based Ideal Voltage Scaling
Previous IPC−based Hybrid Voltage Scaling at Basic Blocks

(a) Energy Savings (normalized with energy consumption while running at 1.2V,
600MHz)

Previous IPC−based Hybrid Voltage Scaling at Basic Blocks

ADPCM D−JPEG D−MPEG EPIC RASTA EQUAKE PARSER VPR
Benchmarks

 0

 1

 2

 1.5

 0.5

N
or

m
al

iz
ed

 D
el

ay

Fixed Voltage: 1.2V, 600MHz
Commit Rate−based Ideal Voltage Scaling

(b) Performance Impact (normalized with performance while running at 1.2V,
600MHz)

Figure 16: Comparison of Fixed Voltage Scheme with Ideal (at Commit Stage) Voltage Scaling and the
Hybrid Scheme

indicate an ILP burst. Otherwise, the application is run
based on the runtime IPC predicted for the previous win-
dow.

Figure 17 compares the proposed hybrid scheme with a
hardware-only scheme with sampling window of 100 cycles,
and 10,000 cycles. Figure 17 (a) shows the energy reduction.
Figure 17 (b) shows the percentage increase (or decrease) in
performance relative to the target performance (corresponds
to 0 in the figure).

As seen, energy consumption is reduced significantly: by

as much as 15% to 50%. When the application’s perfor-
mance fails to meet the target but degrades performance
compared to the target performance, it is possible that more
energy reduction is achieved, e.g., in d-jpeg. In many soft
real-time applications, the quality of perceived performance
rolls off slowly as the actual performance degrades.

We can note that the runtime IPC based schemes degrade
performance significantly in two applications: d-jpeg and
rasta. Rasta’s performance is off only at a 100 cycle granu-
larity. D-jpeg is off by more than 50% at both 100 and 10,000

251

cycle granularities. The explanation is that this application
has ILP burstiness at both window sizes, that a runtime
IPC based scheme cannot predict accurately. The actual
IPC variation, shown at two granularities in Figure 18, con-
firms this. We can, for example, note from subfigure (a) that
at a window size of 10,000 we would have a good chance to
have very different ILP in consecutive windows (that would
make our runtime IPC based scheme frequently misspredict
the actual ILP).

We can also observe that even the hybrid compiler-enabled
scheme degrades performance for one application, parser, by
20%. By contrast to the runtime scheme, this is not a funda-
mental limitation however. We have found that the reason
the hybrid compiler-enabled scheme does not meet perfor-
mance in parser is that there are too few voltage scaling
flags introduced by the compiler (voltage scaling is intro-
duced primarily at loop boundaries in this example). The
hybrid approach could be easily adjusted to fix this prob-
lem: for example, by simply implementing loop-splitting or
loop-peeling in the compiler to add more voltage scaling de-
cision points. Another solution would be to adjust voltage
not only after compiler-inserted points but also at a run-
time, fixed window size similarly to the runtime IPC based
schemes. We are currently pursuing research in this direc-
tion.

Overall, our results confirm our belief that an adaptive
voltage scaling scheme that relies solely on the previous win-
dow’s runtime IPC to predict IPC cannot match the target
performance in bursty applications. In addition, we have
found that static IPC, in combination with runtime IPC,
is useful to make correct voltage decisions even in bursty
applications. Interestingly, we have found that static IPC
based schemes degrade performance much less than runtime
schemes in both voltage scaling and fetch throttling opti-
mizations. An explanation for this finding is that the inac-
curacy introduced by static IPC estimation due to dynamic
effects is often much less significant than the IPC mispre-
dictions in runtime schemes due to ILP burstiness.

6. PREVIOUS WORK
Most existing ILP based approaches use hardware-based

heuristics to predict ILP behavior based on past profiling
information. This dynamic-only prediction is then used to
drive a throttling, gating or resource-resizing mechanism to
save energy. The work can be divided into two broad cat-
egories: front-end and back-end methods. Front-end tech-
niques focus on the fetch and decode block, i.e., the earlier
stages of the pipeline. The back-end methods, on the other
hand, utilize the later stages, i.e., the issue stage. Other
researchers have also looked at using the dynamic-only pre-
diction to drive a voltage and frequency scaling mechanism
to save energy.

An early example for front-end techniques is the pipeline
gating work of Manne et al. [25]. The authors inhibit specu-
lative execution when such execution is highly likely to fail.
They analyze when a branch is likely to mispredict and ex-
clude wrong-path instructions from being fetched into the
pipeline. Their results show a 38% reduction in wrong-path
executions with a 1% performance loss. A more recent work
by Parikh et al. [28] also examines power issues related to
branch prediction. A key observation of the paper is that
chip-wide energy consumption could be reduced by improv-
ing branch prediction accuracy even if this leads to spend-

ing more power in the branch unit. An alternative front-end
approach is fetch/decode throttling by Baniasadi et al. [7].
This fine-grained approach utilizes the information passing
through each pipeline stage to estimate the ILP. Based on
this information, the fetch/decode stage is stalled when in-
sufficient parallelism exists. However, as also expressed by
the authors, traffic per pipeline stage is used as an indirect,
approximate, metric of power dissipation.

Back-end approaches concentrate on the issue logic. One
popular technique is dynamically resizing the instruction
queue size; most researchers take a coarse-grained approach.
Folegnani and Gonzales [14] demonstrate that a critical power
component in modern microprocessors is the part devoted to
extracting parallelism from applications at run-time. Every
1000 cycles, they check if the instruction queue can be re-
sized based on past ILP information in the form of IPC.
Combined with other issue queue management methods,
they report 14.9% energy savings with 1.7% performance
degradation. However, they do not consider the additional
power dissipation due to the added logic. Ponomarev et
al. [29] also dynamically resize the instruction queue. They
dynamically and independently adjust the size of the issue
queue, the reorder buffer and the load/store queue. Up to
70% of the power associated with those structures are elim-
inated. Buyuktosunoglu et al. [10] applied a similar tech-
nique, but included the power impact of added logic as well.
They report an identical result of up to 70% reduction. An
alternative technique, as applied by Bahar and Manne [6]
disables clusters of execution units as well as the issue queue
when the IPC is predicted to be low. The prediction is done
every 256 cycles, so the scheme is coarse-grained. Ghiasi et
al. [15] use a coarse granularity scheme to change the issue
mode of the processor according to its IPC needs. The over-
all target IPC is specified by the OS, and is determined by
a separate profiling run of the application.

Aggressive supply voltage scaling and process optimiza-
tion to reduce energy for active logic circuits are being ex-
amined in [24, 12]. A recent work by [13] monitors a pro-
gram’s ILP and adjusts processor voltage in response to the
amount of observed ILP. They use a profile-driven approach
to determine the ILP by setting up an interrupt handler
that calculates the observed ILP every 2µs. Another scheme
proposed by Marculescu [26] proposes the use of multiple
supply voltages at a microarchitectural level by exploiting
the difference in latencies of different pipeline stages. The
work in [18] proposes a trace-based compiler strategy that
is used to scale the voltage in application phases with low
CPU utilization. A profile-driven dynamic voltage scheme,
shown in [5], uses compiler techniques to establish program
checkpoints for voltage scaling at an intra-task level. [30]
proposed a static voltage scheduling algorithm for hard real-
time systems. This scheme exploited slack times within in-
dividual task boundaries to power-down the system during
minimal resource utilization periods.

7. CONCLUSION
Energy and power consumption reduction are critical de-

sign objectives in modern processors. This paper describes
a suite of compiler-architecture techniques to obtain chip-
wide energy reduction in the processor, centered around the
idea of leveraging IPC information for power-aware resource
management. We use IPC information to adaptively adjust
voltage and speed, and to throttle processor resources, in re-

252

Previous IPC−based HW Scheme, Sample period: 10000 cycles

 2

 0.5

 0

N
or

m
al

iz
ed

 E
ne

rg
y

 1.5

 1

ADPCM D−JPEG D−MPEG EPIC

Benchmarks

RASTA EQUAKE PARSER VPR

Previous IPC−based Hybrid Scheme
Previous IPC−based HW Scheme, Sample period: 100 cycles

(a) Energy Savings (normalized with energy consumption while running at 1.75V,
1GHz)

Previous IPC−based HW Scheme, Sample period: 100 cycles

ADPCM D−JPEG D−MPEG EPIC
Benchmarks

RASTA EQUAKE PARSER VPR

−40

E
xe

cu
tio

n
T

im
e

(%
 d

ev
ia

tio
n)

−20

 0

 20

 40

 60
Previous IPC−based Hybrid Scheme

Previous IPC−based HW Scheme, Sample period: 10000 cycles

(b) Increase/decrease in execution time (normalized with performance while running
at 1.2V, 600MHz with a slack of 20%)

Figure 17: Comparison of previous IPC-based Hybrid Scheme with previous IPC-based Hardware-only
Schemes with different voltage scaling interval

(a) IPC burstiness seen at 100 cycle window

0

0.5

1

1.5

2

2.5

3

50 100 150 200 250 300 350 400 450 500

IP
C

 V
ar

ia
tio

n

Interval (x10000 cycles)

djpeg

(b) IPC burstiness seen at 10,000 cycle window

Figure 18: IPC burstiness observed in d-jpeg for various window sizes

sponse to changes in ILP. Overall, static IPC based resource
throttling alone can save up to 14% energy in the proces-
sor with less than 5% IPC degradation. We have found
that static IPC, in combination with runtime IPC, is nec-
essary to make correct voltage decisions in bursty applica-
tions. Interestingly, we have found that the static IPC based
schemes degrade performance much less than the runtime-
only schemes, in both voltage scaling and fetch throttling
optimizations. This is because the inaccuracy introduced
by static IPC estimation in compiler-enabled schemes due
to dynamic effects (such as cache misses) is often much less
significant than IPC mispredictions caused by the program
ILP burstiness in runtime schemes.

8. REFERENCES
[1] The standard performance evaluation corporation.

http://www.spec.org, Decmember 2000.

[2] A. Aho, R. Rethi, and J. Ullman. Compilers:
Principles, techniques, and tools. Addison-Wesley.

[3] W. Amme, P. Braun, F. Thomasset, and
E. Zehendner. Data dependence analysis of assembly
code. In International Journal on Parallel
Programming 28, 5, 2000.

[4] C. J. Anderson and et al. Physical design of a
fourth-generation power ghz microprocessor. In
Proceedings of the 2001 IEEE International Solid-State
Circuits Conference (ISSCC ’01), February 2001.

[5] A. Azevedo and et al. Profile-based dynamic voltage
scheduling using program checkpoints. In Work in

253

submission at the European Design Automation and
Test Conference (DATE ’02). ACM Press, June 2000.

[6] I. R. Bahar and S. Manne. Power and energy
reduction via pipeline balancing. In Proceedings of the
28th Annual International Symposium on Computer
Architecture (ISCA ’01), June 2001.

[7] A. Baniasadi and A. Moshovos. Instruction flow-based
front-end throttling for power-aware high-performance
processors. In Proceedings of the International
Symposium on Low Power Electronics and Design
(ISLPED ’01), August 2001.

[8] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A
framework for architectural-level power analysis and
optimizations. In Proceedings of the 27th International
Symposium on Computer Architecture (ISCA ’00).
ACM Press, June 2000.

[9] D. Burger and T. D. Austin. The simplescalar tool
set, version 2.0. In University of Wisconsin-Madison
Computer-Sciences Department Technical Report
#1342, June 1997.

[10] A. Buyuktosunoglu, S. Schuster, D. Brooks, P. Bose,
P. Cook, and D. Albonesi. An adaptive issue queue for
reduced power at high performance. In Proceedings of
the Workshop on Power-Aware Computer Systems,
ASPLOS IX, November 2000.

[11] J. Cantin and D. Hill. Cache performance for selected
spec cpu2000 benchmarks. Computer Architecture
News, Vol. 29, No. 4, September 2001.

[12] A. Chandrakasan and R. W. Brodersen. Low-power
digital cmos design. Kluwer Academic Publishers.

[13] B. Childers, H. Tang, and R. Melhem. Adapting
processor supply voltage to instruction-level
parallelism. In Proceedings of the KoolChips Workshp,
in conjunction with MICRO ’00, December 2000.

[14] D. Folegnani and A. Gonzalez. Energy-effective issue
queue. In Proceedings of the 28th Annual International
Symposium on Computer Architecture (ISCA ’01),
June 2001.

[15] S. Ghiasi, J. Casmira, and D. Grunwald. Using ipc
variation in workloads with externally specified rates
to reduce power consumption. In Proceedings of the
Workshop on Complexity-Effective Design, ISCA27,
June 2000.

[16] D. Henry, B. Kuszmaul, G. Loh, and R. Sami. Circuits
for wide-window superscalar processors. In Proceedings
of the 27th International Symposium on Computer
Architecture (ISCA ’00), June 2000.

[17] G. Hinton and et al. The microarchitecture of the
pentium 4 processor. Intel Technology Journal Q1,
2001.

[18] C.-H. Hsu and U. Kremer. Compiler-directed dynamic
voltage scaling based on program regions. Technical
Report, Department of Computer Science, Rutgers
University (DCS-TR-461), November 2001.

[19] A. M. D. Inc. Quantispeed achitecture. AMD White
Paper, September 2001.

[20] W. Kever and et al. A 200mhz risc microprocessor
with 128kb on-chip caches. In Proceedings of the 1997
IEEE International Solid-State Circuits Conference
(ISSCC ’97), February 1997.

[21] A. Kowalczyk and et al. First-generation majc dual

processor. In Proceedings of the 2001 IEEE
International Solid-State Circuits Conference (ISSCC
’01), February 2001.

[22] C. Lee, M. Potkonjak, and W. H. Mangione-Smith.
Mediabench: A tool for evaluating and synthesizing
multimedia and communications systems. In
Proceedings of the 30th Annual International
Symposium on Microarchitecture (MICRO ’97). ACM
Press, December 1997.

[23] J. Leenstra and et al. A 1.8 ghz instruction buffer. In
Proceedings of the 2001 IEEE International Solid-State
Circuits Conference (ISSCC ’01), February 2001.

[24] D. Liu and C. Svensson. Trading speed for low power
by choice of supply and threshold voltages. IEEE
Journal of Solid-State Circuits (IEEE JSSC), 1993.

[25] S. Manne, A. Klauser, and D. Grunwald. Pipeline
gating: Speculation control for energy reduction. In
Proceedings of the 25nd International Symposium on
Microarchitecture (MICRO ’98), June 1998.

[26] D. Marculescu. Power efficient processors using
multiple supply voltages. In Proceedings of the
Workshop on Compilers and Operating Systems for
Low Power, December 2000.

[27] R. Maro, Y. Bai, and I. Bahar. Dynamically
reconfiguring processor resources to reduce power
consumption in high-performance processors. In
Workshop on Power-Aware Computer Systems
PACS’00, In conjunction with ASPLOS IX.

[28] D. Parikh, K. Skadron, Y. Zhang, M. Barcella, and
M. Stan. Power issues related to branch prediction. In
Proceedings of the 8th International Symposium on
High-Performance Computer Architecture (HPCA8),
February 2002.

[29] D. Ponomarev, G. Kucuk, and K. Ghose. Reducing
power requirements of instruction scheduling through
dynamic allocation of multiple datapath resources. In
Proceedings of the 34th Annual International
Symposium on Microarchitecture, December 2001.

[30] D. Shin, J. Kim, and S. Lee. Low-energy intra-task
voltage scheduling using static timing analysis. In
Proceedings of the Design Automation Conference
(DAC ’01). ACM Press, June 2000.

[31] G. Sohi and S. Vajapayem. Instruction issue logic for
high-performance interruptable pipelined processors.
In Proceedings of the 14th International Symposium
on Computer Architecture (ISCA14), June 1987.

[32] E. Tune, D. Liang, D. Tullsen, and B. Calder.
Dynamic predictions of critical path instructions. In
Proceedings of the 7th International Symposium on
High Performance Computer Architecture (HPCA7),
January 2001.

[33] O. S. Unsal, I. Koren, C. M. Krishna, and C. A.
Moritz. Cool-fetch: Compiler-enabled power-aware
fetch throttling. IEEE Computer Architecture Letters,
2002.

[34] F. Weber. Hammer: The architecture of amd’s
next-generation processors. Microprocessor Forum,
October 2001.

[35] V. Zyuban and P. Kogge. Inherently lower-power
high-performance superscalar architectures. In IEEE
Transactions on Computers Vol. 50 No. 3, March
2001.

254

