
Towards Defect-Tolerant Nanoscale Architectures

Csaba Andras Moritz
Department of Electrical and Computer Engineering

University of Massachusetts in Amherst
Amherst, Ma 01002

E-mail: andras@ecs.umass.edu

Teng Wang
Department of Electrical and Computer Engineering

University of Massachusetts in Amherst
Amherst, Ma 01002

Email: twang@ecs.umass.edu

Abstract— Nanoscale computing systems show great potential but
at the same time introduce new challenges not encountered in the
world of conventional CMOS designs and manufacturing. For
example, these systems need to work around layout and doping
constraints resulting from unconventional bottom-up self-
assembly, and need to cope with high manufacturing defect rates
and transient faults. Unfortunately, most conventional defect-
tolerance techniques are not directly applicable in nanoscale
systems because they have been designed for very small defect
rates. In this paper, we explore built-in defect-tolerance
techniques on 2-D semiconductor nanowire (NW) arrays to make
designs self-healing. Our approach combines circuit and system-
level techniques and it does not require defect map extraction,
reconfigurable devices, or addressing each cross-point similar to
reconfigurable approaches. We show that a defect-tolerant
simple processor based on our approach would be still around 3X
denser than an 18-nm CMOS version with equivalent
functionality; a yield greater than 30% is achieved despite a
fabric with 14% defective FETs.

Keywords-semiconductor nanowire; defect tolerance, processor

I. INTRODUCTION
There are many novel devices under development such as

based on unique molecular structures, carbon nanotubes (CNT),
and semiconductor nanowires, and arrays of crossed NWs.
Researchers have already built FETs and diodes out of NWs
[7]. Complementary depletion-mode FETs in the same material
have been demonstrated with Germanium [6] and Silicon [1].
Considerable progress has been made on assembling arrays
with such devices using either unconventional lithographic
techniques or bottom-up self-assembly [8]. This rapid progress
is driving researchers to explore possible new nanoscale
architectures. Examples of proposed architectures include [2],
[5], [9], [15], [16].

This paper focuses on defect-tolerance techniques on 2-D
nanowire array based fabrics and explores a defect-tolerant
nanoscale processor. It is extending ideas presented in [15] and
adds system-level techniques in CMOS.

Most nanoscale defect-tolerance techniques proposed are
based on reconfiguration [3], [5], [9]. By contrast, our solution
for defect-tolerance is based primarily on built-in circuit-level
redundancy in a cascaded AND-OR logic family [12], [15].
Additionally, we combine these circuit-level techniques with
system-level CMOS voting using TMR [10] to further improve
the yield.

We base our work on Nanoscale Application-Specific IC
(NASIC) fabrics [13], [16]. To explore the benefits of the
proposed techniques, we develop and evaluate a defect-tolerant
Wire Streaming Processor [14]. WISP-0 is a simple but
complete stream processor that exercises many different
NASIC circuit styles and optimizations.

Compared with reconfiguration-based approaches, our self-
healing techniques eliminate the need for defect map extraction,
do not require reconfigurable devices, and dispense with the
complex nano-micro interfacing/decoder required to address
each crosspoint in a reconfigurable fabric. Our preliminary
results show that a WISP-0 processor with defect tolerance has
a 3X density advantage compared to equivalent 18-nm CMOS
implementation. The CMOS version is synthesized with
modern CAD tools and scaled to 18-nm. The resulting yield for
WISP-0 is 30% even in the presence of 14% defective
transistors.

The rest of this paper is organized as follows: Section 2
provides a brief overview of NASICs and the architecture of
the WISP-0 processor. Defect-tolerance techniques are
introduced and discussed in Section 3. Results are presented in
Section 4. Section 5 concludes the paper.

II. NASIC FABRICS AND WISP-0 PROCESSORS
NASIC designs use FETs on 2-D semiconductor NW arrays

to implement logic functions. Various optimizations are applied
to work around layout and manufacturing constraints [14], [16].
While based on 2-level AND-OR logic style, NASIC designs
are optimized according to specific applications to achieve high
density. Figure 1 demonstrates the design of a 1-bit full adder
in dynamic style. By using dynamic circuits and pipelining on
the wires, NASICs eliminate the need for explicit flip-flops and
therefore can improve the density considerably [13].

WISP-0 is a stream processor that implements a 5-stage
pipelined streaming architecture. Each stage is implemented in
its own tile. NWs are used to provide communication between
adjacent nanotiles. Each nanotile is surrounded by microwires
(MWs) which carry ground, power supply voltage, and some
control signals. Additionally, in order to preserve the density
advantages of nanodevices, data is streamed through with
minimal control/feedback paths. With the help of dynamic
Nano-latches [13], intermediate values during processing are
stored on the wire without requiring explicit latching. Support
is assumed in the compiler to avoid hazards.

Figure 2 shows the layout. A nanotile is shown as a box
surrounded by dashed lines. More details about the various
circuits used can be found in [14]. In this paper, we use WISP-
0 to evaluate the efficiency of our defect-tolerance techniques.

Figure 1 Dynamic NASIC implementation of a 1-bit full
adder. The thicker wires represent microwires (MWs), the
thin ones are NWs. The black and white dots, at NW
crosspoints, represent p-FETs and n-FETs respectively.

Figure 2 Floorplan of the WISP-0 Processor.

III. NASIC DEFECT-TOLERANCE APPROACH
Although the defect rates of nanoscale fabrics will likely

improve with time, defect levels of nanodevices are expected to
remain in the few percent range [7]. Larger-scale systems
would likely have greater than 5% defects. We are not
considering defect rates greater than 15% as we believe such
fabrics would unlikely become practical.

A. Defect Model Assumed
There are two main types of defects while building

nanoscale systems: NWs may be broken and the FETs at the
NW crosspoints can be defective. FETs may be stuck-short
(channel is always open) or stuck-open (channel is always off).

A stuck-open transistor can be treated as a broken NW; a stuck-
short transistor means no active transistor at the crosspoint.

B. Possibles Directions for Defect Tolerance
Basically there are two main approaches that can be

followed. First, if reconfigurable devices are available, we
could devise techniques to work around defects in a fabric.
Reconfigurable solutions need to address several challenges.
One key challenge is accessing crosspoints in the fabric for the
purpose of reconfiguration. That requires a special interface
between the micro and the nanodevices. Such an interface
involves a large number of extra MWs - a high area overhead
and a major manufacturing challenge due to the required
alignment between the NWs and the MWs. No proposals with
exception of perhaps CMOL [9] address this issue in a practical
way as yet. Additional fundamental issues include extracting
defect maps, reconfiguration algorithms, and the availability of
reconfigurable devices.

Alternatively, as proposed here, we can make the circuits
and the architectures self-healing by adding redundancy and by
modifying a design such that it becomes more tolerant to
defects and faults. We classify our self-healing approach into
four techniques: circuit-level built-in redundancy, NW
interleaving, weak pull-up/down NWs, and system-level Triple
Modular Redundancy (TMR) [10].

C. Circuit-Level Built-In Redundancy
Figure 3 shows a simple example of a NASIC circuit

implementing an AND-OR logic function with built-in
redundancy. To make the masking mechanism work, we
modify the dynamic circuit style reported in our prior work
[13]. We use different schemes for horizontal and vertical NWs.
As shown in the figure, horizontal NWs are predischarged to
“0” and then evaluated. For vertical NWs, they are instead
precharged to “1” and then evaluated. The circuit implements
the logic function o = ab+c; a’ is the redundant copy of a and
so on.

A NASIC design is effectively a connected chain of AND-
OR logic planes. Our objective is to mask defects either in the
logic stage where they occur or following ones. For example, a
break on a horizontal NW in the AND plane (see for example
position “A” in the figure) causes the signal on the NW to be
“0”. This is because the NW is disconnected from Vdd. The
faulty “0” signal can, however, be masked by the following
logic OR plane if the corresponding duplicated/redundant NW
is not defective.

A NW break at position “B” can be masked by the AND
plane in the next stage. Similar masking can be achieved for
breaks on vertical NWs. Stuck-open FETs can be modeled with
broken nanowires; the defect tolerance would work as
described above. For stuck-short FETs, the situation is
relatively simpler as each FET has its redundant copy: if one of
the two transistors is stuck-short (no active transistor at
crosspoint), the circuit still works.

D. Improving Defect-Tolerance by Interleaving NWs
While the previous technique can mask many types of

defects, faults at certain positions are difficult to mask. For

example, if there is a break at position “C” in Figure 3, the
bottom horizontal NW is disconnected from ground. The signal
on this NW will be set to logic “1”. Because of OR logic on the
vertical NWs, the two vertical NWs would be always set to
logic “1”.

Figure 3 Simple NASIC circuit with built-in redundancy.

Clearly, if the NW break is in a specific region, it cannot be
masked easily in subsequent AND or OR planes. We call these
regions hard-to-mask (shown as the thicker segments in Figure
3).

vdd

gnd

precharge

vdd gnd

evaluate preDischarge

o1 o1' o2 o2'

vdd

gnd

precharge

vdd gnd

evaluate preDischarge

o1 o1'o2 o2'

evaluate evaluate

Figure 4 Interleaving NWs to reduce hard-to-mask regions.
The right circuit has interleaved vertical NWs.

By carefully interleaving NWs, however, we can reduce
hard-to-mask regions to minimum. Assuming we have two
outputs (o1 and o2) in a nanotile, Figure 4 illustrates how
interleaving shrinks these regions. Note that the order of NWs
is changed from o1, o1’, o2, o2’ to o1, o2, o1’, o2’. (The input
NWs and some transistors are not shown in the figure for better
clarity.) Interleaving is also helpful in masking clustered
defects because duplicated NWs are set apart.

E. Adding Weak Pull-UP/Down NWs
Even after built-in redundancy and careful interleaving,

there are still hard-to-mask regions remaining: see for example
the regions in the right circuit in Figure 4. A possible solution
to mitigate this problem is to insert weak pull-down vertical
NWs between the AND and OR planes. The idea is to pull
down (or up depending on logic plane) floating inputs, due to
broken NWs, that would cause logic faults: e.g., a floating “1”
input before an OR plane would make the OR logic always
compute “1”. Modifying floating signals to a preferred logic
level would allow masking in following logic planes.

A weak pull-down NW does not change correct operations
if there are no defects, but introduces a performance tradeoff
when there are defects by slowing the circuit down somewhat.
Additionally it adds leakage power. At each crosspoint between
a vertical pull-down NW and horizontal NWs there is a
resistance created. This resistance has to be made larger than
the switch-on resistance (estimated to be smaller than 10MΩ
according to [10]) of a depletion-mode FET and smaller than
the switch-off resistance (over 100Ω). We are currently
building a detailed Spice simulator that would enable us to
explore the performance tradeoffs due to these added NWs. To
ease manufacturing we could also use MWs instead of the
NWs implementing weak pull-up/down wires.

F. Adding CMOS TMR
Voting based techniques such as TMR have been used

extensively before. To be efficient, voting requires that the
probability of a defect in the voting circuit is much smaller than
in the design it is applied to. This is clearly the case in
conventional technology. TMR is not applicable as is in
NASIC designs because at 10-15% fabric defect rates the TMR
circuits themselves would be likely defective.

Nevertheless, in pipelined processor designs one could add
TMR at certain points in a design in CMOS, without affecting
throughput significantly. If each nanotile has two extra
identical replicas, we could vote either at each stage or on the
final outputs. Voting helps where the other techniques leave
faulty outputs. In the following section, we show results for
each of the techniques presented applied to the WISP-0
processor design.

IV. RESULTS
By simulating WISP-0 with randomly generated defects

and comparing the outputs with a defect-free design, we
evaluate the efficiency of our techniques for tolerating
defective FETs and broken NWs. We develop an equivalent
CMOS WISP-0 version in Verilog and compare the area of the
scaled CMOS WISP-0 with the nanoscale WISP-0 after defect
tolerance techniques are included.

A. Defect Tolerance and Yield Results
An assumption we make in the simulation is that defects are

evenly distributed along NWs and among transistors. We do
not consider clustered defects (which are mitigated somewhat
by our NW interleaving but exploring that is beyond the scope
of this paper).

Figure 5 shows the yield of WISP-0 assuming some
defective transistors and Figure 6 shows the yield of WISP-0
with broken NWs. There are 8 curves in each figure, each of
them representing one configuration of WISP-0 with a
combination of defect-tolerance techniques applied. The
figures show that the defect-tolerance techniques considerably
improve yield. Even if the defect rate of FETs reaches 14%, the
yield still remains greater than 30%. If the defect rate of broken
NWs is 10%, the yield is over 19%.

Transistor Effect on Yield

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
Transistor Defect Rate

Y
ie

ld

w/o Red
TMR
Red
Red+Inter
Red+Inter+TMR
Red+Inter+Pull
Red+Inter+Pull+FinalTMR
Red+Inter+Pull+TMR

Figure 5 Yield with different defect-tolerance techniques
and assuming various rates of defective FETs. Notation:
Red shows WISP-0 with built-in redundancy; Inter means
interleaving of NWs; Pull means applying weak pull-
up/down NWs; and TMR refers to CMOS TMR added.

NW Effect on Yield

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
NW Defect Rate

Y
ie

ld

w/o Red
TMR
Red
Red+Inter
Red+Inter+TMR
Red+Inter+Pull
Red+Inter+Pull+FinalTMR
Red+Inter+Pull+TMR

Figure 6 The yield achieved with different techniques
when considering broken NWs.

Interleaving and weak pull-up/down NWs (or MWs) do not
improve the yield of WISP-0 with defective transistors
considerably, but significantly improve it on fabrics with
broken NWs.

B. Comparison with Equivalent CMOS Processor
Figure 7 shows the normalized density of WISP-0 with

different defect-tolerance techniques. The baseline is the
equivalent CMOS design of WISP-0 that we have implemented
in Verilog-HDL and synthesized/scaled to various process
technology nodes. Roughly speaking, our self-healing
techniques increase the area of the original WISP-0 by around
3X. System-level TMR related copies increase the area by
another 3X. If a 3-D layout of CMOS circuits and nanoarrays
described in [11] turns out to be possible, the voting circuits
can be overlapped with the nanoarray. The density of WISP-0
with redundancy (without TMR) is in fact higher than the
density without redundancy but with a micro-nano decoder
required in a reconfigurable solution. Compared with CMOS
implementations, the nanoscale WISP-0 preserves its density
advantage. Even at 18-nm CMOS, available in 12 years
according to ITRS 2005, the self-healing WISP-0 design

combined with system-level TMR would be still around 3X
denser than the equivalent CMOS version.

113

79

57

27

61

36

23

9

20

12
8

3

22
18

15
9

1 1 1 1
0

20

40

60

80

100

120

70nm 45nm 32nm 18nm

N
or

m
al

iz
ed

 D
en

si
ty

WISP-0
WISP-0 w/ Red
WISP-0 w/ Red w/ TMR
WISP-0 w/ Decoder
CMOS

Figure 7 Density comparison NASIC and CMOS WISP-0.

REFERENCES
[1] Y. Cui and C. M. Lieber, “Functional nanoscale electronic devices

assembled using silicon nanowire building blocks, Science, 2001.
[2] A. DeHon, “Array-based architecture for FET-based, nanoscale

electronics”, IEEE Transactions on Nanotechnology, 92(1), 2003.
[3] A. DeHon. “Nanowire-based programmable architectures”, ACM

Journal on Emerging Technologies in Computing Systems,1(2), 2005.
[4] A. DeHon and M. J. Wilson, “Sublithographic programmable logic

arrays”, Proceedings of the International Symposium on Field
Programmable Gate Arrays, FPGA'04, 2004.

[5] S. C. Goldstein and M. Budiu, “Nanofabrics: Spatial computing using
molecular electronics”, The 28th Annual International Symposium on
Computer Architecture, ISCA'01, 2001.

[6] A. B. Greytak, L. J. Lauhon, M. S. Gudiksen, and C. M. Lieber,
“Growth and transport properties of complementary germanium
nanowire field-effect transistors, Applied Physics Letters}, 84(21), May
2004.

[7] Y. Huang, X. Duan, Y. Cui, L. Lauhon, K.-Y. Kim, and C. Lieber, Logic
gates and computation from assembled nanowire building blocks,
Science, 1313(294), 2001.

[8] Y. Huang, X. Duan, Q. Wei, and C. Lieber, ”Directed assembly of one-
dimensional nanostructures into functional networks”, Science, 2001.

[9] K. K. Likharev, “CMOL: Devices, circuits, and architectures”,
Introducing Molecular Electronics, 2004.

[10] R. E. Lyions and W. Vanderkulk, “The use of triple modular redundancy
to improve computer reliability”, IBM Journal of Research and
Development, 6(2), 1962.

[11] X. Ma, D. Strukov, J. H. Lee, and K. Likharev, “Afterlife for silicon:
CMOL circuit architectures”, 5th IEEE Conference on Nanotechnology,
2005.

[12] C. A. Moritz, “Exploring NASICs and a comparison with CMOL: an
architect’s perpective”, Third Advanced Research and Development
Agency, workshop, 2006.

[13] C. A. Moritz and T. Wang, “Latching on the wire and pipelining in
nanoscale designs”, Non-Silicon Computing Workshop, NSC-3, 2004.

[14] T.Wang, M. Bennaser, Y. Guo, and C. A. Moritz, “Wire-streaming
processors on 2-D nanowire fabrics”, Nanotech 2005, Nano Science and
Technology Institute, May 2005.

[15] T. Wang, M. Bennaser, Y. Guo, and C. A. Moritz, “Self-healing wire-
streaming processors on 2-d semiconductor nanowire fabrics”, Nanotech
2006 . Nano Science and Technology Institute, May 2006.

[16] T. Wang, Z. Qi, and C. A. Moritz, “Opportunities and challenges in
application-tuned circuits and architectures based on nanodevices”, 1st
ACM Conference on Computing Frontiers, pp 503--511, New York,
USA, 2004

