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Abstract–Machine-learning frameworks such as 
Bayesian networks are widely acknowledged  
for their capability to reason under 
uncertainty. However their massive 
computational requirement, when implemented 
on conventional computers, hinders their 
usefulness in critical problem areas. We 
propose a non von Neumann machine 
paradigm purposefully architected with 
physical equivalence across all layers for 
solving these problems efficiently. It uses 
emerging magneto-electric nanoscale devices in 
a novel mixed-signal circuit framework 
operating directly on probabilities, without 
segregation between memory and computation. 
Based on bottom-up simulations, we show four 
orders of magnitude performance improvement 
vs. best-of-breed microprocessors with 100 
cores, for Bayesian inference involving a 
million variables. Smaller problem sizes in the 
order of a 100 variables can be realized at 
12mW power consumption and very low area 
of about a tenth of a mm2. Our vision is to 
enable solving complex Bayesian problems in 
real time, while incorporating intelligence 
capabilities at smaller scales everywhere. 

Keywords – B.7.1.a Advanced technologies; C.0.a 
Emerging technologies. 

Introduction 

Today, all computation occurs on microprocessors 
based on stored-program von Neumann 
architecture. However, computers are fast number-
crunching machines and, while very efficient for 
solving problems requiring high precision 
arithmetic, they are inefficient for supporting 

intelligence in machines. Many cognitive 
computing paradigms have emerged such as 
Bayesian networks for reasoning under uncertainty 
[1], sparse distributed memory focusing on neural 
encoding for modeling human associative memory 
[2], neural networks inspired by neurosynaptic 
organization of the brain [3][4] etc. These 
paradigms exhibit high computational complexity 
and require distributed storage and processing 
capabilities. Implementing them on conventional 
von Neumann processors is inefficient in terms of 
performance, power and area. This inefficiency is 
due to the use of abstraction at every layer, from 
Boolean digital logic used to emulate computation 
to the overall microarchitecture that uses 
segregation of memory and computation.  

In this article, we propose to architect for machine 
intelligence using a mindset of physical 
equivalence, which we define as a direct mapping 
of the conceptual computational framework to the 
physical layer without abstraction, by leveraging 
emerging nanotechnology. We illustrate our 
mindset using Bayesian network framework for 
reasoning as an example, but the ideas presented 
here may be extended to other cognitive 
frameworks as well. Bayesian networks are widely 
successful probabilistic formalisms for machine 
intelligence that model causal relationships 
between variables in an application domain. We 
identify physical equivalence for reasoning with 
Bayesian networks at all layers to the extent 
possible, spanning probability representation, a 
novel nanoscale mixed-domain circuit technology 
for probability arithmetic without emulation, and a 
reconfigurable nanoscale Bayesian Cell 
architecture that can map any Bayesian network 
structure directly in hardware. We use extensive 
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bottom-up simulations for evaluating our physical 
equivalence approach, and present a methodology 
to estimate the benefits for Bayesian reasoning 
compared to state-of-the-art 100-core 
microprocessors. Our evaluation shows that for a 
computational resolution of 0.1 it can yield orders 
of magnitude improvement in Bayesian inference 
runtime compared to 100-core microprocessors. 
This could enable solving complex Bayesian 
problems involving large number of variables in 
real time. Bayesian reasoning and learning in 
smaller networks can be achieved with ultra low 
power consumption and area using our approach, 
which can enable incorporating machine 
intelligence capabilities in embedded systems 
everywhere. 

On a side note, there are recent trends that explore 
paradigms such as stochastic computing [5][6] and 
approximate computing [7]. These are primarily 
motivated by applications (e.g. image processing)  
where implementation cost benefits such as small 
size, low power and error-tolerance are more 
desirable at the expense of less-than-perfect 
computation (approximate results) and speed. 
However, these paradigms are conceptually 
different and do not specifically address the goal 
of realizing cognitive computing. While we 
present our nanoscale circuit framework in this 
article in the context of reasoning with Bayesian 
networks, the circuit framework may be relevant 
to these domains as well through further research. 

Overview of Reasoning with Bayesian 
Networks 

Bayesian networks use probabilities as the basis of 
representing uncertainty in knowledge for a given 
domain, and require probability computations for 
reasoning and learning. The structure of a 
Bayesian network is a directed acyclic graph, 
where every node represents a variable and every 
edge represents dependency between connected 
variables. Its parameters are conditional 

probability tables (CPTs) that quantify the strength 
of this dependency between variables.  

Bayesian networks can be used for expressing the 
belief (probability of a hypothesis) in the state of a 
system given some observations on its 
environment (evidence). Given a parameterized 
Bayesian network, reasoning is performed through 
inference operation to calculate beliefs of 
unobserved variables, triggered by a change in the 
state of evidence variables. Belief propagation 
algorithm [1] implements inference in trees and 
poly-trees using distributed local computations at 
every node and message propagation. This 
requires frequent arithmetic on probabilities such 
as multiplication and addition, and distributed 
storage (see Supplementary Document Figure S-1 
for details). A key requirement for scalable 
Bayesian hardware is an efficient and parallel 
implementation of these probability computations. 

Many problems can be mapped into this 
formalism.  For example, gene expression 
networks are being studied in order to understand 
the genetic basis of diseases [8]. Unfortunately the 
resulting networks are generally very complex 
owing to gene-gene and gene-environment 
interactions. Other applications include image 
classification [9], medical diagnosis [10], cyber-
security [11], etc. Inference and learning 
operations for these applications result in high 
computational complexity when implemented on 
stored-program computers. Additionally, cost and 
power efficiency aspects make adding reasoning 
capabilities infeasible in embedded systems. 

Architecting for Bayesian Reasoning with 
Physical Equivalence at Nanoscale 

Our objective is to architect an efficient machine 
for Bayesian reasoning enabled by emerging 
nanotechnology. Therefore, we identify 
representations resulting in physical equivalence 
with the probabilistic framework spanning data 
representation to circuit and architecture layers.  
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The first element is the data representation. Since 
Bayesian networks operate on probabilities, we 
represent data as non-Boolean flat probability 
vectors tied to the physical layer. We define n 
spatially distributed digits p1, p2,…, pn (Figure 1). 
Each digit pi can take any one of k values, where k 
is the number of states supported by the physical 
device (e.g., for devices with 2-states, k = 2 and pi 
∈ {0, 1}). The value of the encoded probability P 
is given by: 

P =
∑ p୧୬
୧ୀଵ

n(k− 1) 
 . 

 

This representation yields fault resilience through 
graceful degradation in case of faults. Using n 
digits with k values each gives us a resolution of 
1/[n(k-1)] (resolution is the minimum non-zero 
probability that can be encoded).  

Aiming to get the physical implementation close 
to this representation, we have embraced an 
unconventional nanoscale device technology and 

circuit model. We use strain-switched magneto-
tunneling junctions (S-MTJs), in addition to 
transistors, to build the hardware. S-MTJs are 
attractive due to low switching energy [12] and 
can support non-volatility (persistence in device 
state even after voltage is removed) with the same 
technology. An S-MTJ is a four-terminal device, 
where a pair of input digital voltages changes the 
resistance between reference and output terminals 
(Figure 1A-B). We refer the reader to references 
[13]-[14] for details on S-MTJ device structure 
and operation.  

Following the mindset of physical equivalence, 
each digit in the probability representation is 
mapped directly in the physical layer to S-MTJ 
resistance, and has equivalent digital voltage 
representation (Figure 1C-D). In this work, we 
focus on binary S-MTJ devices, but the approach 
is applicable to other devices that may exhibit 
more than two states. While S-MTJs are energy 

 

Figure 1| Strain-switched magneto-tunneling junction (S-MTJ) device and probability encoding. (A) Circuit symbol for 
S-MTJ showing inputs, reference and output terminals. Here V represents voltage, I represents current and R is resistance. (B) 
Simulated S-MTJ device characteristics [14]. Hysteresis in resistance vs. voltage characteristics indicates non-volatility. (C) 
Probability data encoding using spatially distributed digits, and physically equivalent representations in voltage/current and 
resistance domains using two-state S-MTJs. Resolution is determined by the number of digits n. (D) Example showing 
encoding of probability value P = 0.4 with a resolution of 0.1 (10 digits).  
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efficient, there is a finite probability of a switching 
error (~2x10-6 [13]) due to random thermal 
fluctuations during switching, and can lead to 
random bit flips. The choice of using flat digital 
vectors for probability representation takes this 
into account. It can alleviate the impact of 
numerical errors due to faulty switching and 
allows graceful degradation; a single switching 
fault results in an error of 1/n for binary S-MTJs, 
where as in weighted representations the error 
would be dependent on the position of the digit 
and can be as high as 2n-1. Research efforts on 

mitigating S-MTJ switching errors are currently 
ongoing. 

Our circuit model is unconventional in that it 
incorporates S-MTJs and transistors in a mixed-
signal magneto-electric circuit style, without 
segregation between memory and computation (S-
MTJs store data and participate in computation). It 
operates directly on probabilities that have 
physical representations (Figure 1C). The control 
lever is in voltage-magnetic domains; by changing 
the magnetization with voltage we can persistently 

 
Figure 2| Magneto-electric circuit framework. (A) Probability Arithmetic Composer framework. (B) Elementary Addition 
Composer, and (C) simulated output characteristics using HSPICE circuit simulator. (D) Elementary Multiplication 
Composer, and (E) simulated output characteristics using HSPICE. Support circuits such as amplifiers can be implemented 
with CMOS operational amplifiers. (F) Example of composing Add-Multiply operation with Multiplication Composers 
arranged in topology of Addition Composer.  This is used extensively in Bayesian inference. (G) Simulated output 
characteristics using HSPICE for Add-Multiply Composer. Here, Vref = 1V, RS-MTJ-High = 40MΩ, RL = 100KΩ, Radj = 4MΩ. 
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change the S-MTJ resistance, which in turn 
changes the output analog current/voltage 
representing resulting probabilities. We call this 
circuit style the Probability Arithmetic Composer 
[14] (Figure 2A), since it is operating intrinsically 
on probabilities and Bayesian computations for 
reasoning are composed hierarchically using 
analog arithmetic functions as elementary building 
blocks.  

Elementary Arithmetic Composers for probability 
Addition and Multiplication (Figure 2B,D) are at 
the core of the recursive building of Bayesian 
functions. Physical equivalence stems from the 
use of underlying circuit physics for computation, 
rather than abstraction-based Boolean logic, and 
hence these operations are significantly simplified 
compared to their digital Boolean counterparts. 
Computations required for Bayesian reasoning can 
be composed by instantiating Elementary 
Arithmetic Composers recursively (Figure 2F), 
leading to self-similar fractal-like circuits. 
Decomposers [14] are used to convert analog 
output from Composers back to spatial probability 

representation.   

Building on this framework, we define Physically 
Equivalent Architecture for Reasoning (PEAR) 
that intrinsically supports Bayesian networks [15] 
(Figure 3). A departure from von Neumann 
mindset, it uses a distributed Bayesian Cell 
architecture where each Bayesian Cell maps a 
Bayesian variable in hardware for physical 
equivalence. A Bayesian Cell’s architectural state 
includes CPTs, likelihood vectors (λ), belief 
vectors (BEL) and prior vectors (π). It 
incorporates Probability Arithmetic Composers 
(Supplementary Document Figures S-2, S-3, S-4) 
that locally store these quantities persistently and 
perform computations on them for inference as per 
belief propagation algorithm [1], obviating the 
need for external memory. Bayesian Cells are 
interconnected through metal routing layers, 
typically used in integrated circuits, for message 
propagation. This connectivity is made 
programmable through reconfigurable Switch 
Boxes (Supplementary Document Figure S-5), and 
can support mapping arbitrary graph structures. 

 
Figure 3 | Physically Equivalent Architecture for Reasoning (PEAR) and Evaluation. (A) Example binary tree Bayesian 
Network (BN). (B) PEAR: Reconfigurable Bayesian Cell (BC) framework mapping every node in BN graph to a BC. The 
directed links in BN are implemented with metal routing layers typically used in integrated circuits, made reconfigurable 
using Switch Boxes (similar to Field-Programmable Gate Arrays). This allows mapping any BN structure to PEAR. (C) 
Schematic of computation modules in each BC, implemented with Composers. 
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An activity controller may be used to switch off 
Bayesian Cells when idle.  

Methodology and Evaluation 

We use extensive bottom-up evaluation 
methodology (Figure 4), to evaluate PEAR in 
terms of runtime, power and area for Bayesian 
inference. Using binary tree Bayesian network 
with each variable supporting up to four states, we 
scale the number of variables, in the order of 100 
to a million, for evaluation. We compare it with 
implementation on 100-core microprocessors 
[17][18], which represent best-in-breed von 
Neumann machines designed to leverage the 
inherent parallelism in such applications.  

A. Bayesian Inference Runtime Modeling on 
Multicore Processors 

Our multi-core processor runtime model is highly 
optimistic, and while unattainable (underestimates 
significantly what runtime could be achieved in 
practice), it can be used as a baseline that allows 

exploring Bayesian networks with very large 
problem sizes up to a million nodes. This model 
assumes that all processors achieve full utilization 
in every cycle (as if the instruction level 
parallelism in software would be always available 
to max out execution to all functional units), all 
computations occur in one cycle (ignores that 
computations would often require multiple cycles 
with glue logic in-between), and cache/memory 
performance is idealized. The model takes into 
account the overhead of data communication with 
memory [16] but ignores resource contention to 
access DRAM and on-chip network contention. 
The performance for multicore processors 
mentioned here is therefore unattainable in 
practice. Hardware parameters considered (Table 
1) for multi-core processors are based on Tilera 
100-core processor specifications [17][18].  

Bayesian inference using belief propagation 
algorithm proceeds in an event-driven manner 
across multiple time-steps. At a given time-step a 
set of nodes in a binary tree are activated when 

 
 

Figure 4 | Methodology used for evaluation of physically equivalent approach across all layers from device, circuit to 
architecture, and comparison with Bayesian network inference implementation on 100-core microprocessors. 
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they receive new messages propagated from 
evidence nodes. Active nodes execute probability 
computations (multiplication and addition) to 
update their belief values, and then propagate new 
messages to neighboring nodes. These neighboring 
nodes are marked as active in the succeeding time-
step and the operations are repeated. All 
computations among active nodes at a given time-
step can be performed in parallel. The total 
number of time-steps required by the algorithm is 
determined by the diameter of the network [1]. 
Assuming that operations are scheduled such that 
maximum instruction level parallelism is achieved, 
the arithmetic execution time for a given time-step 
l is given by, 

ܶ௧
 =

.ݔ ܰ

.ܥ  × ܶ . 

Here, Nl is the number of active nodes in time-step 
l, and x is the number of operations per node. C 
and p are hardware characteristics denoting the 
number of cores and arithmetic pipelines 
respectively. We enumerate active nodes at every 
step of the algorithm, and the total arithmetic 

execution time is given by adding the runtime for 
each of these steps. 

In order to execute inference operation, each node 
requires access to corresponding data 
(probabilities in CPTs, belief vector BEL, 
likelihood λ and prior π vectors). Data memory 
requirement per node, M (bytes), is given by, 
ܯ = ்ܧ × ்ܯ + ாܧ × ாܯ + ఒܧ × ఒܯ + గܧ 

× గܯ . 

Here, Ei denotes number of entries and Mi denotes 
memory size (bytes) per entry for parameter i. We 
determine the data memory requirements for 
computations occurring in every time-step. This 
data has to be retrieved from the main memory 
(DRAM) and the overhead of this communication 
is estimated as follows. If cache-line size is S 
bytes, DRAM latency is L clock cycles, DRAM 
bus-width is B bytes and data rate (minimum of 
DRAM data rate and on-chip network data rate) is 
R bytes per second, the time to service a cache 
miss is given by the following equation. 

ܶ௦௦ = ܮ × ܶ +
(ܵ − (ܤ

ܴ  

If k cores can be serviced by the main memory in 
parallel, the total time to service memory requests 
for a given time-step is estimated as follows. 

Here Nl is the number of active nodes in a given 
time-step. Thus inference runtime for a binary tree 
Bayesian network with n levels (2n-1 time-steps) 
is given by, 

ாܶ௫ =   ( ܶ௧
 + ܶ

 )
ଶିଵ

ୀଵ

. 

ܶ
 =

1
݇ × × (ݏ݁ݏݏ݅݉ ℎ݁ܿܽܿ ݂.ܰ) ܶ௦௦  

=
1
݇ × ܰ × ܯ

ܵ × ܶ௦௦  

Table 1. Multi-core Processor Hardware 
Characteristics Employed [17][18]. 

Notation Used Parameter Values 
C: No. of cores 100 

Tclock: Clock period 0.67ns 
p: No. of arithmetic 
pipelines per core 2 

S: Size of L2 cache line 64 Bytes 
B: DRAM bus-width 72 bits 
R: DRAM data rate 136.5 Gbps 

k: No. of DRAM ports 4 
L: Latency of DRAM 
access for cache miss 80 clock cycles 

n: No. of levels in binary 
tree Bayesian network 7 to 20 

ECPT, EBEL, Eλ, Eπ: No. of 
entries for memory 

16 for CPT, 4 for others 
(supporting up to 4 states 

per node) 
MCPT, MBEL, Mλ, Mπ: 

Parameter memory size 2 Bytes 
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B. Bayesian Inference Runtime Analysis on 
Physically Equivalent Architecture for Reasoning 
(PEAR) 

We implement Bayesian networks directly in 
hardware on PEAR. Here, Bayesian Cells use non-
volatile Composers for inference, which support 
memory-in-computation by storing the required 
data internally. Thus there is no interfacing with 
external memory required, which mitigates 
memory latency overhead. Inference runtime 
analysis is based on critical-path delay in each 
Bayesian Cell and switch box, which are extracted 
using HSPICE circuit simulations (Figure 5 shows 
an overview of S-MTJ HSPICE behavioral device 

macromodel). Area required is estimated based on 
total number of Bayesian Cells and switch boxes 
for a given Bayesian network size. The maximum 
number of active nodes at a given time-step 
determines the worst-case power dissipation, and 
the power dissipated per node is extracted using 
HSPICE simulations (Table 2). 

If the number of levels is n and execution time at a 
given time-step l is Tl (critical-path delay of a 
Bayesian Cell), the inference runtime for 2n-1 
time-steps is given by, 

ܶாோ = (2݊ − 1) × ܶ + ܶ . 

Table 2. Evaluation of Composer Circuits for Bayesian Inference (Resolution is 0.1). 
 

Module Critical Path Delay 
(ns)  Area (μm

2
)  

Worst-case 
Power (μW)  

Likelihood Estimation 
(Multiplication Composers x4) 144  20  4.57  

Belief Update 
(Multiplication Composers x4) 144  20  4.57  

Prior Estimation 
(Add-multiply Composers x4) 137  50  11.24 

Diagnostic Support 
(Add-multiply Composers x4) 137  50  11.24 

Prior Support 
(Multiplication Composers x8) 144  40  9.14  

Decomposers (x60) 132.9  240  11.37  

CMOS Op-Amps (x176) 100  95.4  89.32  

Bayesian Cell 998.2 515.4 141.45 

Switch Box 10  398.8 0.85  

 

 

 

Figure 5 | HSPICE behavioral macromodel overview for non-volatile S-MTJ. Device schematic showing input/output 
terminals, and parasitic capacitances to be modeled (bottom left). The S-MTJ resistance vs. input voltage characteristics are 
captured using voltage-controlled resistances (VCR1, VCR2). VCR1 models the low resistance to high resistance switching, 
and VCR2 models the high-to-low resistance switching. The appropriate element is selected based on the current state of the 
S-MTJ, which is stored using a flip-flop [19]. The voltage-controlled delay (VC-Delay) is a custom circuit that models the 
transient switching delay of the S-MTJ. Finally the Decision Logic block is a behavioral circuit model that accepts as inputs 
the current applied voltage (Vin = Vin-2 – Vin-1) as well as the previous state (from flip-flop), and determines if the S-MTJ’s 
current state needs to be switched. Based on the input voltage polarity, as long as the input voltage is above the switching 
threshold the Decision Logic block causes the state to switch.  
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Here, Tcomm is the latency of communicating 
probability messages between nodes, which are 
near-neighbor voltage communication events. The 
switch-box delay extracted through HSPICE 
circuit simulations determines this communication 
delay, and total number of message propagation 
events multiplied by this number yields the total 
communication delay. 

Conclusion 

Our evaluation (Figure 6) indicates that PEAR can 
provide about four orders of magnitude runtime 
speedup over 100-core processors in supporting 
large Bayesian networks involving about a million 
variables, for a resolution of 0.1 (studies in image 
classification [9] and medical diagnosis [10] 
applications have been reported to have close to 
optimal accuracy with this resolution).  This 
tremendous performance speedup may enable 

applications that are computationally infeasible 
today, particularly in Bayesian network learning 
which requires repeated inference operations. 
Furthermore, it is able to support real-time 
intelligence capabilities at about 12mW power 
consumption and very low die area cost of 0.1mm2 
for smaller problem domains (~100 variables). 
This latter is adequate for many real-world 
systems such as sensors and automation 
controllers. Our vision is that every embedded 
application could incorporate intelligence 
capability at this problem scale. 
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