

1

Abstract–Machine-learning frameworks such as
Bayesian networks are widely acknowledged
for their capability to reason under
uncertainty. However their massive
computational requirement, when implemented
on conventional computers, hinders their
usefulness in critical problem areas. We
propose a non von Neumann machine
paradigm purposefully architected with
physical equivalence across all layers for
solving these problems efficiently. It uses
emerging magneto-electric nanoscale devices in
a novel mixed-signal circuit framework
operating directly on probabilities, without
segregation between memory and computation.
Based on bottom-up simulations, we show four
orders of magnitude performance improvement
vs. best-of-breed microprocessors with 100
cores, for Bayesian inference involving a
million variables. Smaller problem sizes in the
order of a 100 variables can be realized at
12mW power consumption and very low area
of about a tenth of a mm2. Our vision is to
enable solving complex Bayesian problems in
real time, while incorporating intelligence
capabilities at smaller scales everywhere.

Keywords – B.7.1.a Advanced technologies; C.0.a
Emerging technologies.

Introduction

Today, all computation occurs on microprocessors
based on stored-program von Neumann
architecture. However, computers are fast number-
crunching machines and, while very efficient for
solving problems requiring high precision
arithmetic, they are inefficient for supporting

intelligence in machines. Many cognitive
computing paradigms have emerged such as
Bayesian networks for reasoning under uncertainty
[1], sparse distributed memory focusing on neural
encoding for modeling human associative memory
[2], neural networks inspired by neurosynaptic
organization of the brain [3][4] etc. These
paradigms exhibit high computational complexity
and require distributed storage and processing
capabilities. Implementing them on conventional
von Neumann processors is inefficient in terms of
performance, power and area. This inefficiency is
due to the use of abstraction at every layer, from
Boolean digital logic used to emulate computation
to the overall microarchitecture that uses
segregation of memory and computation.

In this article, we propose to architect for machine
intelligence using a mindset of physical
equivalence, which we define as a direct mapping
of the conceptual computational framework to the
physical layer without abstraction, by leveraging
emerging nanotechnology. We illustrate our
mindset using Bayesian network framework for
reasoning as an example, but the ideas presented
here may be extended to other cognitive
frameworks as well. Bayesian networks are widely
successful probabilistic formalisms for machine
intelligence that model causal relationships
between variables in an application domain. We
identify physical equivalence for reasoning with
Bayesian networks at all layers to the extent
possible, spanning probability representation, a
novel nanoscale mixed-domain circuit technology
for probability arithmetic without emulation, and a
reconfigurable nanoscale Bayesian Cell
architecture that can map any Bayesian network
structure directly in hardware. We use extensive

Architecting for Causal Intelligence at Nanoscale
Santosh Khasanvis, Mingyu Li, Mostafizur Rahman, Ayan K. Biswas, Mohammad Salehi-Fashami,

Jayasimha Atulasimha, Supriyo Bandyopadhyay, and Csaba Andras Moritz*
Email: andras@ecs.umass.edu*

Architecting for Causal Intelligence at Nanoscale
Santosh Khasanvis, Mingyu Li, Mostafizur Rahman, Ayan K. Biswas, Mohammad Salehi-Fashami,

Jayasimha Atulasimha, Supriyo Bandyopadhyay, and Csaba Andras Moritz*
Email: andras@ecs.umass.edu*

2

bottom-up simulations for evaluating our physical
equivalence approach, and present a methodology
to estimate the benefits for Bayesian reasoning
compared to state-of-the-art 100-core
microprocessors. Our evaluation shows that for a
computational resolution of 0.1 it can yield orders
of magnitude improvement in Bayesian inference
runtime compared to 100-core microprocessors.
This could enable solving complex Bayesian
problems involving large number of variables in
real time. Bayesian reasoning and learning in
smaller networks can be achieved with ultra low
power consumption and area using our approach,
which can enable incorporating machine
intelligence capabilities in embedded systems
everywhere.

On a side note, there are recent trends that explore
paradigms such as stochastic computing [5][6] and
approximate computing [7]. These are primarily
motivated by applications (e.g. image processing)
where implementation cost benefits such as small
size, low power and error-tolerance are more
desirable at the expense of less-than-perfect
computation (approximate results) and speed.
However, these paradigms are conceptually
different and do not specifically address the goal
of realizing cognitive computing. While we
present our nanoscale circuit framework in this
article in the context of reasoning with Bayesian
networks, the circuit framework may be relevant
to these domains as well through further research.

Overview of Reasoning with Bayesian
Networks

Bayesian networks use probabilities as the basis of
representing uncertainty in knowledge for a given
domain, and require probability computations for
reasoning and learning. The structure of a
Bayesian network is a directed acyclic graph,
where every node represents a variable and every
edge represents dependency between connected
variables. Its parameters are conditional

probability tables (CPTs) that quantify the strength
of this dependency between variables.

Bayesian networks can be used for expressing the
belief (probability of a hypothesis) in the state of a
system given some observations on its
environment (evidence). Given a parameterized
Bayesian network, reasoning is performed through
inference operation to calculate beliefs of
unobserved variables, triggered by a change in the
state of evidence variables. Belief propagation
algorithm [1] implements inference in trees and
poly-trees using distributed local computations at
every node and message propagation. This
requires frequent arithmetic on probabilities such
as multiplication and addition, and distributed
storage (see Supplementary Document Figure S-1
for details). A key requirement for scalable
Bayesian hardware is an efficient and parallel
implementation of these probability computations.

Many problems can be mapped into this
formalism. For example, gene expression
networks are being studied in order to understand
the genetic basis of diseases [8]. Unfortunately the
resulting networks are generally very complex
owing to gene-gene and gene-environment
interactions. Other applications include image
classification [9], medical diagnosis [10], cyber-
security [11], etc. Inference and learning
operations for these applications result in high
computational complexity when implemented on
stored-program computers. Additionally, cost and
power efficiency aspects make adding reasoning
capabilities infeasible in embedded systems.

Architecting for Bayesian Reasoning with
Physical Equivalence at Nanoscale

Our objective is to architect an efficient machine
for Bayesian reasoning enabled by emerging
nanotechnology. Therefore, we identify
representations resulting in physical equivalence
with the probabilistic framework spanning data
representation to circuit and architecture layers.

3

The first element is the data representation. Since
Bayesian networks operate on probabilities, we
represent data as non-Boolean flat probability
vectors tied to the physical layer. We define n
spatially distributed digits p1, p2,…, pn (Figure 1).
Each digit pi can take any one of k values, where k
is the number of states supported by the physical
device (e.g., for devices with 2-states, k = 2 and pi
∈ {0, 1}). The value of the encoded probability P
is given by:

P =
∑ p୧୬
୧ୀଵ

n(k− 1)
 .

This representation yields fault resilience through
graceful degradation in case of faults. Using n
digits with k values each gives us a resolution of
1/[n(k-1)] (resolution is the minimum non-zero
probability that can be encoded).

Aiming to get the physical implementation close
to this representation, we have embraced an
unconventional nanoscale device technology and

circuit model. We use strain-switched magneto-
tunneling junctions (S-MTJs), in addition to
transistors, to build the hardware. S-MTJs are
attractive due to low switching energy [12] and
can support non-volatility (persistence in device
state even after voltage is removed) with the same
technology. An S-MTJ is a four-terminal device,
where a pair of input digital voltages changes the
resistance between reference and output terminals
(Figure 1A-B). We refer the reader to references
[13]-[14] for details on S-MTJ device structure
and operation.

Following the mindset of physical equivalence,
each digit in the probability representation is
mapped directly in the physical layer to S-MTJ
resistance, and has equivalent digital voltage
representation (Figure 1C-D). In this work, we
focus on binary S-MTJ devices, but the approach
is applicable to other devices that may exhibit
more than two states. While S-MTJs are energy

Figure 1| Strain-switched magneto-tunneling junction (S-MTJ) device and probability encoding. (A) Circuit symbol for
S-MTJ showing inputs, reference and output terminals. Here V represents voltage, I represents current and R is resistance. (B)
Simulated S-MTJ device characteristics [14]. Hysteresis in resistance vs. voltage characteristics indicates non-volatility. (C)
Probability data encoding using spatially distributed digits, and physically equivalent representations in voltage/current and
resistance domains using two-state S-MTJs. Resolution is determined by the number of digits n. (D) Example showing
encoding of probability value P = 0.4 with a resolution of 0.1 (10 digits).

4

efficient, there is a finite probability of a switching
error (~2x10-6 [13]) due to random thermal
fluctuations during switching, and can lead to
random bit flips. The choice of using flat digital
vectors for probability representation takes this
into account. It can alleviate the impact of
numerical errors due to faulty switching and
allows graceful degradation; a single switching
fault results in an error of 1/n for binary S-MTJs,
where as in weighted representations the error
would be dependent on the position of the digit
and can be as high as 2n-1. Research efforts on

mitigating S-MTJ switching errors are currently
ongoing.

Our circuit model is unconventional in that it
incorporates S-MTJs and transistors in a mixed-
signal magneto-electric circuit style, without
segregation between memory and computation (S-
MTJs store data and participate in computation). It
operates directly on probabilities that have
physical representations (Figure 1C). The control
lever is in voltage-magnetic domains; by changing
the magnetization with voltage we can persistently

Figure 2| Magneto-electric circuit framework. (A) Probability Arithmetic Composer framework. (B) Elementary Addition
Composer, and (C) simulated output characteristics using HSPICE circuit simulator. (D) Elementary Multiplication
Composer, and (E) simulated output characteristics using HSPICE. Support circuits such as amplifiers can be implemented
with CMOS operational amplifiers. (F) Example of composing Add-Multiply operation with Multiplication Composers
arranged in topology of Addition Composer. This is used extensively in Bayesian inference. (G) Simulated output
characteristics using HSPICE for Add-Multiply Composer. Here, Vref = 1V, RS-MTJ-High = 40MΩ, RL = 100KΩ, Radj = 4MΩ.

5

change the S-MTJ resistance, which in turn
changes the output analog current/voltage
representing resulting probabilities. We call this
circuit style the Probability Arithmetic Composer
[14] (Figure 2A), since it is operating intrinsically
on probabilities and Bayesian computations for
reasoning are composed hierarchically using
analog arithmetic functions as elementary building
blocks.

Elementary Arithmetic Composers for probability
Addition and Multiplication (Figure 2B,D) are at
the core of the recursive building of Bayesian
functions. Physical equivalence stems from the
use of underlying circuit physics for computation,
rather than abstraction-based Boolean logic, and
hence these operations are significantly simplified
compared to their digital Boolean counterparts.
Computations required for Bayesian reasoning can
be composed by instantiating Elementary
Arithmetic Composers recursively (Figure 2F),
leading to self-similar fractal-like circuits.
Decomposers [14] are used to convert analog
output from Composers back to spatial probability

representation.

Building on this framework, we define Physically
Equivalent Architecture for Reasoning (PEAR)
that intrinsically supports Bayesian networks [15]
(Figure 3). A departure from von Neumann
mindset, it uses a distributed Bayesian Cell
architecture where each Bayesian Cell maps a
Bayesian variable in hardware for physical
equivalence. A Bayesian Cell’s architectural state
includes CPTs, likelihood vectors (λ), belief
vectors (BEL) and prior vectors (π). It
incorporates Probability Arithmetic Composers
(Supplementary Document Figures S-2, S-3, S-4)
that locally store these quantities persistently and
perform computations on them for inference as per
belief propagation algorithm [1], obviating the
need for external memory. Bayesian Cells are
interconnected through metal routing layers,
typically used in integrated circuits, for message
propagation. This connectivity is made
programmable through reconfigurable Switch
Boxes (Supplementary Document Figure S-5), and
can support mapping arbitrary graph structures.

Figure 3 | Physically Equivalent Architecture for Reasoning (PEAR) and Evaluation. (A) Example binary tree Bayesian
Network (BN). (B) PEAR: Reconfigurable Bayesian Cell (BC) framework mapping every node in BN graph to a BC. The
directed links in BN are implemented with metal routing layers typically used in integrated circuits, made reconfigurable
using Switch Boxes (similar to Field-Programmable Gate Arrays). This allows mapping any BN structure to PEAR. (C)
Schematic of computation modules in each BC, implemented with Composers.

6

An activity controller may be used to switch off
Bayesian Cells when idle.

Methodology and Evaluation

We use extensive bottom-up evaluation
methodology (Figure 4), to evaluate PEAR in
terms of runtime, power and area for Bayesian
inference. Using binary tree Bayesian network
with each variable supporting up to four states, we
scale the number of variables, in the order of 100
to a million, for evaluation. We compare it with
implementation on 100-core microprocessors
[17][18], which represent best-in-breed von
Neumann machines designed to leverage the
inherent parallelism in such applications.

A. Bayesian Inference Runtime Modeling on
Multicore Processors

Our multi-core processor runtime model is highly
optimistic, and while unattainable (underestimates
significantly what runtime could be achieved in
practice), it can be used as a baseline that allows

exploring Bayesian networks with very large
problem sizes up to a million nodes. This model
assumes that all processors achieve full utilization
in every cycle (as if the instruction level
parallelism in software would be always available
to max out execution to all functional units), all
computations occur in one cycle (ignores that
computations would often require multiple cycles
with glue logic in-between), and cache/memory
performance is idealized. The model takes into
account the overhead of data communication with
memory [16] but ignores resource contention to
access DRAM and on-chip network contention.
The performance for multicore processors
mentioned here is therefore unattainable in
practice. Hardware parameters considered (Table
1) for multi-core processors are based on Tilera
100-core processor specifications [17][18].

Bayesian inference using belief propagation
algorithm proceeds in an event-driven manner
across multiple time-steps. At a given time-step a
set of nodes in a binary tree are activated when

Figure 4 | Methodology used for evaluation of physically equivalent approach across all layers from device, circuit to
architecture, and comparison with Bayesian network inference implementation on 100-core microprocessors.

7

they receive new messages propagated from
evidence nodes. Active nodes execute probability
computations (multiplication and addition) to
update their belief values, and then propagate new
messages to neighboring nodes. These neighboring
nodes are marked as active in the succeeding time-
step and the operations are repeated. All
computations among active nodes at a given time-
step can be performed in parallel. The total
number of time-steps required by the algorithm is
determined by the diameter of the network [1].
Assuming that operations are scheduled such that
maximum instruction level parallelism is achieved,
the arithmetic execution time for a given time-step
l is given by,

ܶ௧
 =

.ݔ ܰ

.ܥ × ܶ .

Here, Nl is the number of active nodes in time-step
l, and x is the number of operations per node. C
and p are hardware characteristics denoting the
number of cores and arithmetic pipelines
respectively. We enumerate active nodes at every
step of the algorithm, and the total arithmetic

execution time is given by adding the runtime for
each of these steps.

In order to execute inference operation, each node
requires access to corresponding data
(probabilities in CPTs, belief vector BEL,
likelihood λ and prior π vectors). Data memory
requirement per node, M (bytes), is given by,
ܯ = ்ܧ × ்ܯ + ாܧ × ாܯ + ఒܧ × ఒܯ + గܧ

× గܯ .

Here, Ei denotes number of entries and Mi denotes
memory size (bytes) per entry for parameter i. We
determine the data memory requirements for
computations occurring in every time-step. This
data has to be retrieved from the main memory
(DRAM) and the overhead of this communication
is estimated as follows. If cache-line size is S
bytes, DRAM latency is L clock cycles, DRAM
bus-width is B bytes and data rate (minimum of
DRAM data rate and on-chip network data rate) is
R bytes per second, the time to service a cache
miss is given by the following equation.

ܶ௦௦ = ܮ × ܶ +
(ܵ − (ܤ

ܴ

If k cores can be serviced by the main memory in
parallel, the total time to service memory requests
for a given time-step is estimated as follows.

Here Nl is the number of active nodes in a given
time-step. Thus inference runtime for a binary tree
Bayesian network with n levels (2n-1 time-steps)
is given by,

ாܶ௫ = (ܶ௧
 + ܶ

)
ଶିଵ

ୀଵ

.

ܶ
 =

1
݇ × × (ݏ݁ݏݏ݅݉ ℎ݁ܿܽܿ ݂.ܰ) ܶ௦௦

=
1
݇ × ܰ × ܯ

ܵ × ܶ௦௦

Table 1. Multi-core Processor Hardware
Characteristics Employed [17][18].

Notation Used Parameter Values
C: No. of cores 100

Tclock: Clock period 0.67ns
p: No. of arithmetic
pipelines per core 2

S: Size of L2 cache line 64 Bytes
B: DRAM bus-width 72 bits
R: DRAM data rate 136.5 Gbps

k: No. of DRAM ports 4
L: Latency of DRAM
access for cache miss 80 clock cycles

n: No. of levels in binary
tree Bayesian network 7 to 20

ECPT, EBEL, Eλ, Eπ: No. of
entries for memory

16 for CPT, 4 for others
(supporting up to 4 states

per node)
MCPT, MBEL, Mλ, Mπ:

Parameter memory size 2 Bytes

8

B. Bayesian Inference Runtime Analysis on
Physically Equivalent Architecture for Reasoning
(PEAR)

We implement Bayesian networks directly in
hardware on PEAR. Here, Bayesian Cells use non-
volatile Composers for inference, which support
memory-in-computation by storing the required
data internally. Thus there is no interfacing with
external memory required, which mitigates
memory latency overhead. Inference runtime
analysis is based on critical-path delay in each
Bayesian Cell and switch box, which are extracted
using HSPICE circuit simulations (Figure 5 shows
an overview of S-MTJ HSPICE behavioral device

macromodel). Area required is estimated based on
total number of Bayesian Cells and switch boxes
for a given Bayesian network size. The maximum
number of active nodes at a given time-step
determines the worst-case power dissipation, and
the power dissipated per node is extracted using
HSPICE simulations (Table 2).

If the number of levels is n and execution time at a
given time-step l is Tl (critical-path delay of a
Bayesian Cell), the inference runtime for 2n-1
time-steps is given by,

ܶாோ = (2݊ − 1) × ܶ + ܶ .

Table 2. Evaluation of Composer Circuits for Bayesian Inference (Resolution is 0.1).

Module Critical Path Delay
(ns) Area (μm

2
)

Worst-case
Power (μW)

Likelihood Estimation
(Multiplication Composers x4) 144 20 4.57

Belief Update
(Multiplication Composers x4) 144 20 4.57

Prior Estimation
(Add-multiply Composers x4) 137 50 11.24

Diagnostic Support
(Add-multiply Composers x4) 137 50 11.24

Prior Support
(Multiplication Composers x8) 144 40 9.14

Decomposers (x60) 132.9 240 11.37

CMOS Op-Amps (x176) 100 95.4 89.32

Bayesian Cell 998.2 515.4 141.45

Switch Box 10 398.8 0.85

Figure 5 | HSPICE behavioral macromodel overview for non-volatile S-MTJ. Device schematic showing input/output
terminals, and parasitic capacitances to be modeled (bottom left). The S-MTJ resistance vs. input voltage characteristics are
captured using voltage-controlled resistances (VCR1, VCR2). VCR1 models the low resistance to high resistance switching,
and VCR2 models the high-to-low resistance switching. The appropriate element is selected based on the current state of the
S-MTJ, which is stored using a flip-flop [19]. The voltage-controlled delay (VC-Delay) is a custom circuit that models the
transient switching delay of the S-MTJ. Finally the Decision Logic block is a behavioral circuit model that accepts as inputs
the current applied voltage (Vin = Vin-2 – Vin-1) as well as the previous state (from flip-flop), and determines if the S-MTJ’s
current state needs to be switched. Based on the input voltage polarity, as long as the input voltage is above the switching
threshold the Decision Logic block causes the state to switch.

9

Here, Tcomm is the latency of communicating
probability messages between nodes, which are
near-neighbor voltage communication events. The
switch-box delay extracted through HSPICE
circuit simulations determines this communication
delay, and total number of message propagation
events multiplied by this number yields the total
communication delay.

Conclusion

Our evaluation (Figure 6) indicates that PEAR can
provide about four orders of magnitude runtime
speedup over 100-core processors in supporting
large Bayesian networks involving about a million
variables, for a resolution of 0.1 (studies in image
classification [9] and medical diagnosis [10]
applications have been reported to have close to
optimal accuracy with this resolution). This
tremendous performance speedup may enable

applications that are computationally infeasible
today, particularly in Bayesian network learning
which requires repeated inference operations.
Furthermore, it is able to support real-time
intelligence capabilities at about 12mW power
consumption and very low die area cost of 0.1mm2
for smaller problem domains (~100 variables).
This latter is adequate for many real-world
systems such as sensors and automation
controllers. Our vision is that every embedded
application could incorporate intelligence
capability at this problem scale.

Acknowledgements
 We acknowledge valuable feedback from
coordinating guest-editor Dr. Erik P. DeBenedictis
and discussion with Dr. Laura Monroe (Los
Alamos National Laboratory). We acknowledge
support by National Science Foundation grants
CCF-1407906, ECCS-1124714, CCF-1216614 and
CCF-1253370.

Table 2. Evaluation of Composer Circuits for Bayesian Inference (Resolution is 0.1).

Module Critical Path Delay
(ns) Area (μm

2
)

Worst-case
Power (μW)

Likelihood Estimation
(Multiplication Composers x4) 144 20 4.57

Belief Update
(Multiplication Composers x4) 144 20 4.57

Prior Estimation
(Add-multiply Composers x4) 137 50 11.24

Diagnostic Support
(Add-multiply Composers x4) 137 50 11.24

Prior Support
(Multiplication Composers x8) 144 40 9.14

Decomposers (x60) 132.9 240 11.37

CMOS Op-Amps (x176) 100 95.4 89.32

Bayesian Cell 998.2 515.4 141.45

Switch Box 10 398.8 0.85

10

References
[1] J. Pearl, Probabilistic reasoning in intelligent systems:

Networks of plausible inference, San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1988.

[2] P. Kanerva, Sparse distributed memory, Cambridge, Mass:
Bradford/MIT Press, 1988.

[3] W. S. McCulloch, and W. Pitts, "A logical calculus of ideas
immanent in nervous activity," Bulletin of Mathematical
Biophysics, vol. 5, no. 4, pp. 115–133, 1943.

[4] J. Schmidhuber, “Deep learning in neural networks: An
overview,” Neural Networks, vol. 61, pp. 85-117, 2015.

[5] W.J. Poppelbaump, C. Afuso and J.W. Esch, “Stochastic
computing elements and systems,” in proceedings of ACM Fall
Joint Computer Conference, pp. 635-644, 1967.

[6] A. Alaghi and J.P. Hayes, “Survey of stochastic computing,”
ACM Transactions on Embedded Computing Systems, vol. 12,
no. 2s, article 92, pp. 92:1-92:19, 2012.

[7] J. Han and M. Orshansky, "Approximate computing: An
emerging paradigm for energy-efficient design," in proceedings
of 18th IEEE European Test Symposium (ETS), pp.1-6, 2013.

[8] C. Su, A. Andrew, M. R. Karagas, and M. E. Borsuk, “Using
Bayesian networks to discover relations between genes,
environment, and disease,” BioData Mining, vol. 6, no. 6, pp. 1–
21, 2013.

[9] S. Tschiatschek, and F. Pernkopf, "On Bayesian Network
classifiers with reduced precision parameters," IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol.
37, no. 4, pp.774-785, 2015.

[10] A. Onisko, and M. J. Druzdzela, “Impact of precision of
Bayesian network parameters on accuracy of medical diagnostic
systems,”Artificial Intelligence in Medicine, Elsevier, vol. 57,
no. 3, pp. 197 – 206, 2013.

[11] Valdes and K. Skinner, “Adaptive, model-based monitoring for
cyber attack detection,” in Recent Advances in Intrusion
Detection (RAID), pp. 80–92, 2000.

[12] J. Atulasimha and S. Bandyopadhyay, “Hybrid spintronics and
straintronics: A super energy-efficient computing paradigm
based on interacting multiferroic nanomagnets” in Spintronics in
Nanoscale Devices, Ed. E. R. Hedin, CRC press, pp. 121-154,
2013.

[13] A. K. Biswas, S. Bandyopadhyay and J. Atulasimha, “Energy-
efficient magnetoelastic non-volatile memory,” Applied physics
Letters, vol. 104, pp. 232403-1-232403-5, 2014.

[14] S. Khasanvis, M. Li, M. Rahman, M. S.-Fashami, A. K. Biswas,
J. Atulasimha, S. Bandyopadhyay, and C. A. Moritz, “Self-
similar magneto-electric nanocircuit technology for probabilistic
inference engines,” IEEE Transactions on Nanotechnology,
Special Issue on Cognitive Computing with Nanotechnology, in
press. [IEEE Early Access Available Online]

[15] S. Khasanvis, M. Li, M. Rahman, M. S.-Fashami, A. K. Biswas,
J. Atulasimha, S. Bandyopadhyay, and C. A. Moritz,
“Physically equivalent magneto-electric nanoarchitecture for
probabilistic reasoning,” in proceedings of 11th IEEE/ACM

Figure 6 | Evaluation. (A) Estimated runtime for Bayesian inference using a binary tree Bayesian Network. We extract
operation time for multi-core processors based on computational and memory requirements, assuming ideal parallelism.
Operation time for inference on PEAR is based on worst-case critical-path delay analysis, obtained using HSPICE circuit
simulations. Composers support computational resolution of 0.1. (B) Area evaluation. (C) Power evaluation.

11

International Symposium on Nanoscale Architectures, pp. 25-
26, 2015.

[16] C. A. Moritz, D. Yeung, and A. Agarwal, “SimpleFit: A
framework for analyzing design trade-offs in raw architectures,”
IEEE Transactions on Parallel and Distributed Systems, vol.12,
no.7, pp.730-742, July 2001.

[17] C. Ramey, “TILE-Gx100 manycore processor: Acceleration
interfaces and architecture”, Presented at Hot Chips 23, Aug.
2011, Tilera Corporation. Available Online:
http://www.hotchips.org/wp-
content/uploads/hc_archives/hc23/HC23.18.2-
security/HC23.18.220-TILE-GX100-Ramey-Tilera-e.pdf.

[18] J. Mars and R. Hott, “Tilera (RAW) processor,” March 16,
2011. Available Online:
http://www.cs.virginia.edu/~skadron/cs8535_s11/Tilera.pdf.

[19] P. Junsangsri, F. Lombardi, and J. Han, "Macromodeling a
phase change memory (PCM) cell by HSPICE," in proceedings
of IEEE/ACM International Symposium Nanoscale
Architectures (NANOARCH), pp.77-84, 2012.

Authors:
 Santosh Khasanvis is a Senior Research Scientist at
BlueRISC Inc. This work was performed during his
PhD. His research interests include unconventional
computing architectures, nanoscale computing, and
cyber-security. He received his PhD degree in Computer
Engineering from University of Massachusetts,
Amherst, in 2015. Contact him at
santosh@bluerisc.com.

Mingyu Li is a PhD candidate in Electrical and
Computer Engineering at University of Massachusetts
Amherst, USA. His research interests include 3D
integration and nanoscale computing. He received his
M.S. degree in Computer Engineering from University
of Massachusetts, Amherst, in 2015. Contact him at
mingyul@umass.edu.

Mostafizur Rahman is an Assistant Professor of
Computer Science and Electrical Engineering at
University of Missouri Kansas City, USA. His research
interests include 3D fabrics and nanoscale prototyping.
He received his PhD degree in Computer Engineering
from University of Massachusetts, Amherst, in 2015.
Contact him at rahmanmo@umkc.edu.

Ayan K. Biswas is a PhD candidate in Electrical and
Computer Engineering at Virginia Commonwealth
University, USA. His research interests include hybrid
straintronic-spintronic device modeling and simulation.
He received his B. Sc. degree in Electrical and
Electronic Engineering from Bangladesh University of
Engineering and Technology, Dhaka, Bangladesh in
2011. Contact him at biswasak@mymail.vcu.edu.

Mohammad Salehi-Fashami is a Postdoctoral
Research Fellow in Physics and Astronomy at
University of Delaware, USA. His research interests
include magnetostrictive materials and multiferroic
nanomagnet-based computing. He received his PhD
degree in Mechanical Engineering from Virginia
Commonwealth University, USA, in 2014. Contact him
at mfashami@udel.edu

Jayasimha Atulasimha is an Associate Professor of
Mechanical and Nuclear Engineering, and has a courtesy
appointment as Associate Professor of Electrical and
Computer Engineering at Virginia Commonwealth
University, USA. His research interests include
magnetostrictive materials, nanoscale magnetization
dynamics, and multiferroic nanomagnet-based
computing architectures. He received his PhD degree in
Aerospace Engineering from University of Maryland,
College Park. Contact him at jatulasimha@vcu.edu.

Supriyo Bandyopadhyay is a Professor of
Electrical and Computer Engineering at Virginia
Commonwealth University, USA. His research interests
include nanoelectronics and spintronics. He received his
PhD degree in Electrical Engineering from Purdue
University, West Lafayette, Indiana. Contact him at
sbandy@vcu.edu.

Csaba Andras Moritz is a Professor of Electrical
and Computer Engineering at University of
Massachusetts Amherst, and is the founder and
Chairman of BlueRISC Inc. His research interests
include post-CMOS nanoscale computing, computer
architecture, and security. He received his PhD degree in
Computer Systems from Royal Institute of Technology,
Stockholm, Sweden. Contact him at
andras@ecs.umass.edu.

