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Abstract 
Growing wire delay and clock rates limit the 
amount of cache accessible within a single 
cycle. Non-uniform cache access (NUCA) has 
been proposed as a solution to this problem in 
Kim et al, 2002 [1], and performance has been 
analyzed for various cache organizations and 
technology assumptions. Innovations included 
cache organizations which dynamically 
migrated data between blocks within the cache 
(D-NUCA) resulting in 11% improvement in 
SPEC2000 benchmarks over a static (S-NUCA) 
approach. Our work duplicates, verifies and 
extends the work of [1] in the following ways: 
1) a commercial microprocessor, the Compaq 
Alpha 21364 is used for a realistic floorplan (an 
admitted limitation by the authors of [1]), cache 
sizes and wire delay estimates, 2) process 
technology nodes 130nm, 90nm and 65nm are 
used to explore the scaling of the proposed 
approach, and 3) new topologies and policies 
are developed for migrating data within the 
cache. Our results generally corroborate those of 
[1] and show that the realistic floorplan results 
in a 16% increased performance. Furthermore, 
our improved topology and policies for 
movement of data within the cache result in still 
improved performance of 43%. It should be 
noted that there is wide variation in the 
improvement of the different SPEC2000 
benchmarks, thus pointing to future compiler-
level approaches to D-NUCA exploitation. 
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1. Introduction 
Interconnect is a huge problem in high 
performance processors and memory hierarchies 
[3,5,15]. Previous work demonstrated that very 
large uniform cache architectures are incapable 
of supporting a high performance processor 
[17]. For each technology shrink, a smaller 
percentage of the chip is reachable within a 
clock cycle [13]. In particular, slow 
interconnects is the main reason for stalling a 
fast processor when waiting for cache accesses. 
Cache latency will continue to attack 
performance as long as cache sizes are 
increasing and as on-chip cache access require 
multiple cycles due to wire delay.  
 
1.1 Previous Work 
Prior architecture research introduced multi-
ported, banked and pipelined caches to 
overcome the penalty of long cache accesses, 
but each approach has its own drawback [18]. 
Although multi-ported cells can satisfy more 
requests simultaneously, the extra logic 
increases the chip area and timing delay per bit 
and the benefits quickly diminishes when more 
than three or more ports is supported. Banked 
caches allowed cache accesses to overlap but 
this organization is susceptible to bank conflicts 
when enough addresses reference the same 
bank. Despite the ability to pipeline cache 
requests, cache latencies greater than 2 or 3 
cycles have proven to negatively affect 
performance. More recent work shows 
performance improvement in the access latency 
as cache designs progress from uniform caches 
to non-uniform caches in Figure 1 [1]. 
 



The UCA cache (uniform cache architecture) is 
the traditional cache architecture that required 
the same clock cycles for all cache accesses. 
The ML-UCA (Multi-Level Uniform Cache 
Architecture) is the notion of having multiple 
levels of cache, where the smaller cache is a 
subset of the larger cache structures. The S-
NUCA-1 (Static Non-Uniform Cache 
Architecture) is the first non-uniform 
architecture that is evaluated. This cache 
organization requires direct wiring to each of 
the banks where each bank is assigned a specific 
latency for every bank access. The second non-
uniform cache architecture (S-NUCA-2) 
introduces network characteristics in cache 
architectures. The S-NUCA-2 represents a grid 
of networked cache banks that use shared busses 
to transmit data. Finally the D-NUCA (Dynamic 
Non-Uniform Cache Architecture) is an upgrade 
to the S-NUCA-2 where the most recently used 
data are stored in the banks closest to the 
processing core.  
 
There are a variety of cache organizations to be 
explored but this research uses an S-NUCA2 
configuration as a basis for evaluating the 
modified D-NUCA cache on an Alpha 21364 
for a technology study (130nm, 90nm and 
65nm) and a topology study for a torus, mesh 
and hypercube on-chip interconnection net-
work. The rest of the paper will 
compare/contrast the architectural components 
of the D-NUCA systems in Section 2, followed 

by a description of the simulation environment 
and methodology in Section 3. The remaining 
two sections analyze the simulated results and 
present possible extensions to this work in 
Sections 4 and 5 respectively. Section 6 is the 
supplementary Appendix containing graphs and 
tables. 
 
2. D-NUCA Components Comparison 
The section describes the key architecture 
components that separate a D-NUCA from an S-
NUCA2 system followed by the key difference 
between D-NUCA1 [1] and D-NUCA2 (this 
paper). 
 
2.1 Data Mapping 
 
Data mapping is the organization of data among 
the cache banks. The D-NUCA1 system in 
Figure 2a shows an 8-way set associative cache 
consisting of 32 banks. Each arrow represents a 
single way of the entire cache for each mapping 
scheme. The simple mapping scheme organizes 
each cache way to a numbered column. This 
mapping strategy is considered simple because 
the banks themselves are wired into vertical 
columns. The shared mapping scheme upgrades 
the simple mapping scheme by mapping data in 
such a way to equalize the average access delay 
for all sets. The four closest banks to the 
processing core (first rows of column 3,4,5 and 
6) are composed of data that maps to each of the 
8 cache ways. 

 

 

 
Figure 1. Cache Organizations [1] 

 



 
Figure 2a. Mapping Schemes [1] 

 
 
 

      
Figure 2b. Modified Simple Scheme 

 
A simple mapping approach is preferred, 
because the shared mapping requires irregular 
wiring and data mapping to spliced banks. 
Because the simple mapping scheme requires 
little wiring overhead, there are a number of 
vacant wiring levels to overlay a torus, mesh or 
hypercube interconnection network. For this 
research work, data is mapped slightly different 

by assigning sets to individual banks in Figure 
2b. This arrangement allocates all blocks within 
a set to a bank. Therefore a numbered set always 
points to a single bank. The D-NUCA2 uses a 
modified simple mapping scheme to allocate 
banks to a bank set. Therefore a modified 
simple approach can assign all the blocks of set 
0 through set 8 to a bank versus distributing the 
blocks of a set amongst the banks in the original 
simple mapping scheme. 
 
2.2 Bank Search 
The D-NUCA1 explored two bank search 
policies for determining the location of a cache 
block. The two policies are the incremental and 
the multicast search. In Figure 3, the 
incremental search policy checks the closest 
bank by doing a partial tag search. If the closest 
bank does not generate a tag match, then a 
partial tag search is executed on the next closest 
bank and so on, until either there is a match or a 
cache miss. The multicast policy performs a 
partial tag search on all banks within a bank set 
in parallel. Although the multicast provides 
faster average access times, checking the banks 
simultaneously can be sensitive to contention. 
The multicast search policy showed the best 
performance and was chosen as the search 
policy for the D-NUCA2. 
 
2.3 Promotion, Insertion and Eviction Policy 
 
The original D-NUCA cache promotes data 
incrementally as shown in Figure 5a. As shown, 
a data request to a far bank triggers a promotion. 
When accessing a far bank, the promotion 
occurs when the data transmits to the processing 
core. If the next closest bank is full then a cache 
set must be demoted to the next farthest bank, 
essentially swapping two blocks. Their goal is to 
minimize the global traffic when data is 
swapped between two banks, by restricting data 
movement to neighboring banks. This current 
research work assumes an LRU policy that 
promotes data to the closest bank as the data 
travel to the processing core in Figure 5b and 



invalidates the set in the farther bank location. 
In the event of a promotion and the closest bank 
is full, a set in the closest bank is demoted to the 
next farthest bank. 
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Figure 3. Bank Search Policies 

 
Demotion continues until bank has a vacancy In 
order to offset the network contention that can 
occur during the demotion process, the research 
assumes dual-ported cells, a single port for 
reading and another for writing data. This will 
allow reads and writes to occur simultaneously. 
 
The D-NUCA1 explored a number of insertion 
policies when retrieving new data from the 
lower level of cache. The best performance 
occurred when incoming data was inserted into 
cache banks that is located a moderate distance 
from the processing core and eviction policy 
that always evicts from the farthest banks. The 

D-NUCA2 uses an insertion policy that places 
new data at the head and an eviction policy that 
removes data from the farthest cache banks. 
 
To summarize in Table 1, this research attempts 
to improve upon the D-NUCA model created at 
UT-Austin by introducing wire latency 
modeling, a more aggressive promotion policy, 
and the ability to interconnect banks into a 
variety of topologies. 
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Figure 4a. Incremental Promotion 
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Figure 4b. Absolute Promotion 

 
 
 
 

 
 
 
 

 D-NUCA1 D-NUCA2 
Data Mapping Shared Mapping Modified Simple Mapping 
Interconnection Scheme Mesh User Defined 
Search Policy Incremental or Multicast Multicast 
Insertion Policy Head, Middle or Tail Head 
Promotion Policy 2-bank/1-hit All banks/1-hit 
Eviction Policy Tail Tail 

Table 1. Simulator Model Comparison 
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Figure 5. Simulation Flowchart 

 
3.3 Global Wire Delay Table 
The global wire delay table carries the task of 
converting the wire lengths extracted from a 
floorplan into communication delay (in cycles). 
The table was generated using SPICE and the 
ITRS 2002 (International Technology Roadmap 
for Semiconductor) pro-jections [2]. The ITRS 
projection includes the wire width, height, 
spacing and the dielectric permittivity. For each 
wire length entry, optimally placed repeaters 
were inserted, using the Bakoglu’s method to 
decrease the communication delay [19]. This is 
common practice in the industry. The table 
below graphically represents only pure wire 
delay and does not consider the latch delay. The 
latch delay is considered later when converting 
wire delay to wire latency. Each latency 
conversion assumes 10% of a clock cycle to be 
added to the wire delay. Therefore a wire length 
of 0.8cm in 90nm technology would translate 
into 1.98 cycles, but with the inclusion of the 
latch delay, the total delay in cycle would rise 
above 2.00 cycles. Applying the ceiling function 
would finally bring the latency to 3 cycles, 
because microprocessors are not partial-cycle 
driven. 

 
This access delay plus the communication delay 
are entered into an extended version of 
Simplescalar that supports non-uniform caches 
and the global routing delay to and from the 
ports of a cache bank. Simplescalar then 
executes a set of benchmarks using the new 
parameters to generate performance statistics 
later shown in Table 2 and 3.  
 
3.4 Simplescalar Extended 
Simplescalar is an architecture simulator that 
will model the Alpha 21364. A few 
modifications were made to Simplescalar to also 
model a dynamic non-uniform cache system 
with wire delay support. In the extended version 
of Simplescalar, the use is capable of specifying 
the quantity, size and the optimal transmission 
delay for each cache banks. The examples 
below are the necessary parameters to simulate 
the cache system. 
 
cache:latency_array{ 

0:255:1:511:2:767:3:1023:3:1279:1: 
1535:2:1791:3:2047:4:2303:1:2559:2:2815:3:3
071:4:3327:1:3583:2:3839:3:4095:4} 

 
In the above example, the option specifies 4096 
sets that are partitioned into 16 sub-banks. The 
first bank can hold up to 256 sets starting with 
set 0x000 which requires a communication 
latency of 1 cycles, the next bank can also hold 
256 sets but starts with set 256 (or 0x100) with a 
communication latency of 2 cycles. Since all 
banks are restricted to the same size, all bank 
access delays are constant. 
 
cache:bank_set{ 

Bank15, Bank14, Bank13, Bank12: Bank11, 
Bank10, Bank9, Bank8: Bank7, Bank6, 
Bank5, Bank4: Bank3, Bank2, Bank1, Bank0} 

 
cache:alt_path { 

Bank3, Bank7, Bank11, Bank15: Bank2, 
Bank6, Bank10, Bank14: Bank1, Bank5, 
Bank9, Bank13: Bank0, Bank4, Bank8, 
Bank12} 

 



In the event that a node is busy servicing a 
request, depending on the inter-connection 
scheme, it is possible to reroute the data to the 
processing core. The above two parameters 
define the bank sets and the alternate path for 
rerouting around a busy node is necessary. For 
the configuration above, there are 4 defined 
search paths. When cache is read, a preliminary 
tag comparison determines which bank set to 
search and initiates a multicast. In the event that 
a cache hit occurs and the data collides with a 
busy node then an alternate route is chosen for 
the data to travel. The only constraint is that 
data can only be rerouted between neighboring 
(point-to-point) cache banks. Therefore in the 
above alt_path parameter, a reroute can be 
performed between Bank3 & Bank7 but not 
between Bank3 & Bank11. 
 
4. Simulation Results 
The section compares the performance of a S-
NUCA to a D-NUCA2 system. The research 
generates statistics for 130nm, 90nm and 65nm, 
and a topology study of a D-NUCA2 system 
that supports a torus, mesh and a hypercube. 
 
4.1 Technology Trend 
The technology trend uses a 21364 floorplan as 
the basis for comparing a S-NUCA to a D-
NUCA. The Alpha 21364 is a model of the 
Alpha 21264 with large on-chip L2 caches and 
multiprocessor support. The results of Table 2 
demonstrate that the IPC generated for each 
benchmark was unaffected much by 
communication delay and that pipelined cache 
accesses could easily hide the wire delay 
overhead. These results were somewhat 
expected since global delay is around a cycle for 
most point-to-point transmissions. The average 
IPC improvement was a miniscule 0.25% 
despite a noticeable miss rate. This implies that 
pipelined cache access is capable of hiding 
small multi-cycle delay (less than 3 cycles) 
within a sizeable cache structures [18]. 

 

The Alpha floorplan (90nm) in Figure 8 is a 
21364 with 8MB of L2 cache. Figure 8 shows a 
considerable smaller processor core that is under 
50% of the original core. The 90nm processor 
core also consumes a smaller percentage of the 
chip area because of the growing chip area per 
process generation [2]. The unused area of the 
chip is filled with 0.125MB cache banks. The 
cache bank size was reduced to make more room 
for supporting hardware when scaling to a 90nm 
process.   
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Figure 8. Alpha 21364 Floorplan 90nm 

 
The 90nm version of the Alpha 21364 has 8MB of 
64 banks each contain 0.125MB memory 
modules. The banks are organized in groups of 8 
banks creating cubic nodes across the chip. The 
groups are further broken down into two 
subgroups of four banks. The two subgroups are 
restricted from exchanging data but are 
interconnected for routing purposes described in 
Section 3.  
 
The average IPC improvement showed a 43% 
improvement across the benchmarks with the 
exception of two benchmarks. This is 
characteristic of excessive collision between far 
read accesses and data demotions from closer to 
farther banks. This implies that the data set is 



small enough to fit inside the L2 cache banks. The 
low D-NUCA2 average miss rate from the 130nm 
to the 90nm floorplan also confirms this. /The 
technology study in Figure 10 correlates the 
throughput of an S-NUCA and D-NUCA2 for 
some benchmarks in SPEC2000. The study 
explores the IPC for 2MB, 8MB, and 16MB with 
a corresponding floorplan in 130nm, 90nm and 
65nm. Each of the benchmarks shows a 
significant improvement for D-NUCA2 systems. 
Surprisingly for most benchmarks, the D-NUCA2 
for 90nm outperforms the S-NUCA for a 65nm. 
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Figure 9. Cubic Interconnection Scheme 
 

In general, D-NUCA2 shows significant 
improvement over a S-NUCA for large cache 
systems. But the D-NUCA2 shows some 
limitations on performance when technology 
migrates to 65nm. At 65nm, where the simulated 
cache size is 16MB, the cache system is broken 
down into 128 cache banks. At this stage, bank 
contention becomes an issue and prevents data 
from taking the shortest path to the processor. 
Research results show that this occurs frequently 
in 65nm technology and on occasion for apsi and 
mgrid in 90nm where bank contention negatively 
affects performance.  
 
4.2 Topology Study 
The topology study shows the performance trend 
for a D-NUCA system connected in a torus, mesh 
and hypercube network. The number of available 
wiring layers and the possibility of reducing the 
average latency motivated the idea of this 
topology study. As expected each of the 

benchmark showed an improvement as the 
interconnection network complexity increased. 
Because of the increased wiring complexity, data 
was less likely to stall because of a flexible 
network that is very capable of rerouting the data 
to the processor. For this reason the torus 
performs poorly. 
 
Given a single node, data can only travel to 
another single node. In a mesh and hypercube 
configuration, a piece of data has the option of 
one or two other nodes for rerouting, respectively. 
The hypercube outperforms the mesh network by 
providing reroutes with fewer hops. This 
translates into a smaller average latency in Figure 
11a and b. 
 
5. Conclusion 
Non-uniform cache access (NUCA) has been 
proposed as a solution to this problem of wire 
dominated cache access in Kim et al, 2002 [1]. 
Our works attempts to reproduce their research 
environment on an already existing chip floorplan 
as well as extend and defend their concept with 
architectural enhancements and a wire topology 
study. In general, our results corroborate those of 
UT-Austin and in using their best-reported 
configuration were able to boost performance by 
43% when using a multi-cube bank 
interconnection scheme.  
 
The strength of our simulation environment is the 
extraction of wire delay from an existing floorplan 
and simulated wire latency using Hspice and 
ITRS 2002 assumptions. The future work includes 
improved evaluation techniques that involve much 
longer simulations, studies that vary the cache 
bank size for very large on-chip caches. For these 
results, SPEC2000 was used and a simulation 
method that simulated the execution of 200 
million instructions after fast-forwarding the 100 
million instructions. Finally, because contention 
was an issue for very large caches, varying the 
cache bank size can extend superb performance 
improvements down to 30nm where enormous 
amounts of cache can fit on-chip.



6. Appendix 
 

Benchmark S-NUCA2 D-NUCA2 Difference % Miss Rate %
applu 1.0833 1.2742 17.6 3.80
apsi 2.3266 1.5198 -34.7 17.2
fma3d 1.3463 2.2941 70.4 0.13
gcc 0.8118 1.4136 74.1 1.54
lucas 1.1432 1.6427 43.7 0.41
mesa 0.9707 1.9829 104.3 0.14
mgrid 2.0492 1.5003 -26.8 8.91
oammp 1.2196 1.4002 14.8 4.40
oequake 0.963 1.9928 106.9 0.17
oparser 0.985 1.7556 78.2 0.62
ovpr 1.0795 1.7822 65.1 0.36
swim 1.1829 1.7965 51.9 0.50
twolf 0.9711 1.9937 105.3 0.01
wupwise 1.4514 2.0269 39.7 0.90
 Average 43.0 2.79

Table 3. Alpha 21364 90nm  
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Figure 11. Cache Bank Contention for D-NUCA2 
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