
Designing Memory Subsystems Resilient to Process Variations

Mahmoud Bennaser

Department of ECE
University of Massachusetts

Amherst, MA 01003
mbennase@ecs.umass.edu

Yao Guo

Department of ECE
University of Massachusetts

Amherst, MA 01003
yaoguo@ecs.umass.edu

Csaba Andras Mortiz

Department of ECE
University of Massachusetts

Amherst, MA 01003
andras@ecs.umass.edu

Abstract
As technology scales, more sophisticated fabrication
processes cause variations in many different parameters in
the device. These variations could severely affect the
performance of processors by making the latency of circuits
less predictable and thus requiring conservative design
approaches. In this paper, we use Monte-Carlo simulations
in addition to worst-case circuit analysis to establish the
overall delay due to process variations in a cache sub-
system under both typical and worst-case conditions. The
distribution of a cache critical-path-delay in the typical
scenario was determined by performing Monte-Carlo
simulations at different supply voltages, threshold voltages,
and transistor lengths on a complete cache design. In
addition to establishing the delay variation, we present an
adaptive variable-cycle-latency cache architecture that
mitigates the impact of process variations on access latency
by closely following the typical latency behavior rather
than assuming a conservative worst-case design-point.
Simulation results show that our adaptive data cache can
achieve a 9% to 21% performance improvement in a
superscalar processor, on the SPEC2000 applications
studied, compared to a conventional design. Additional
performance improvement potential exists in processors
where the data cache access is on the critical path, by
allowing a more aggressive clock rate.

1. Introduction

As technology scales, the feature size reduces thereby
requiring a sophisticated fabrication process. The
manufacturing process causes variations in many different
parameters in the device, such as the effective channel
length Leff, the oxide thickness tox, and the threshold voltage
Vth. These variations increase as the feature size reduces
due to the difficulty of fabricating small structures
consistently across a die or a wafer [3]. Controlling the
variation in device parameters during fabrication is
becoming therefore a great challenge for scaled
technologies.

The performance of integrated circuits can be greatly
affected by these variations. The process variations are
random in nature and are expected to become significant in
the smaller geometry transistors commonly used in
memories. Question is whether there is a significant enough
delay variation overall that will drive a change in memory
architecture design.

Our simulation results with HSPICE show that process
variations on effective channel length and threshold voltage
at 32-nm CMOS technology can affect the performance,
after all factors are considered, at around 2-3X under the
worst-case operating conditions. To account for the worst-
case scenario we might need to increase the cache access
time by 2 to 3 cycles or adopt other design approaches.
Application performance could be impacted by as much as
30-40% as shown in Figure 1.

0

0.5

1

1.5

2

2.5

3

bzip mcf gcc vpr ammp00 art equake

SPEC2000 Benchmarks

IP
C

1 Cycle 2 Cycles 3 Cycles

Figure 1. Application performance for different cache access

cycles in 4-way superscalar (see Table 4 for parameters).
These results suggest that process variations must be

taken into consideration while designing circuits and
perhaps even architectures. There are several ideas that
could be exploited in a memory system: 1) reduce
performance by operating at a lower clock frequency
(conservative approach); 2) increase cache access latency
assuming worst-case delay (conservative approach); and 3)
variable delay cache architecture (adaptive approach
proposed in this paper). The first approach would clearly
have a large impact on overall performance. The second

approach would also have a significant impact as shown
above in Figure 1.

The goal of this paper is to estimate both the worst-
case and typical delay variation expected in a state-of-the-
art cache and to introduce an adaptive cache system that
would mitigate the impact of process variations without
taking any of the conservative design paths suggested
earlier.

The rest of this paper is organized as follows. Section 2
presents a detailed analysis on the impact of process
variation on caches under worst-case and expected
behavior conditions. To estimate the typical delay in a
cache, we determine the distribution of delays by
performing Monte-Carlo sampling at different supply
voltages, threshold voltages, and transistor lengths. In
Section 3, we describe architecture techniques to mitigate
the effect of process variations and propose a variable-cycle
adaptive cache. We show simulation results in Section 4 by
running applications on a superscalar processor with this
design. We have implemented the cache at circuit level
and extended the SimpleScalar [5] architecture simulator.
We use a set of SPEC2000 [2] benchmarks to compare the
performance with a conventional approach. We conclude in
Section 5.

2. Impact of Process Variation in Caches

In this section, we analyze the impact of different
sources of process variations in caches under worst-case-
operating and expected-behavior conditions. We use a
state-of-the-art low power cache that we have designed in
our research group as the starting point for our evaluation.

Table 1 shows the configuration of this cache design.

Table 1. Configuration of our 16 KB Low Power Cache

Cache Component Power Optimization Technique

Tag Array 10 transistors CAM Cells

Data Array 6T SRAM Cells

Cache Line Wordline Gating

Tag and Data Array Cache Subbanking

Column S. A. Alpha Latch S. A. and Sharing
Sense Amplifiers

Bank Decoder 4-input static NOR gates

Line Decoder
Two level decoding: First level 3-
input Dynamic NAND gate and
Second level 2-input NOR gate

In order to evaluate the impact of the parameter
variations on circuit speed we consider variability on the

critical path. The critical path of our CAM-tag cache is
shown in Figure 2.

The CAM-Tag critical path in our design is composed
of the global address decoder to select a bank, tristate I/O to
drive the search bitlines, the dynamic match comparators in
the CAM cells, wordline gating, the data SRAM array,
column multiplexer, sense amplifier and the tristate I/O
drivers connecting back to the CPU. The tristate bus that
connects one 32-bit subbank column back to the CPU 32-
bit load data path has the same fan-in in all configurations.

Process variations in caches affect the performance of
circuits like sense amplifiers that require identical device
characteristics, and SRAM cells that require near-
minimum-sized cell stability for large arrays in embedded,
low-power applications. In addition, the delay of the
address decoders suffer from the process variations that can
result in shorter time left for accessing the SRAM cells.

In order to examine delay tradeoffs under process
variations, we have evaluated the impact of process
variations under both worst-case operating and typical
behavioral conditions. The goal here is to establish a worst-
case baseline that might be used in conventional
conservative designs and also a typical behavior that could
be used to estimate the benefits of migrating to an adaptive
design.

XO
R

Figure 2. Critical path of a CAM-tag cache

2.1 Worst-Case Conditions

Under worst-case operating conditions, we assume that
parameter variations happen at each transistor in the cache
critical path. We have used the HSPICE circuit simulator at
32-nm PTM device model [1]. The nominal value used for
Vth is 0.2V and the nominal value for Leff is 25.3nm, given
by the PTM technology [1].

2.1.1 Channel Length Variation

Channel length variation Leff is due to limitation in the
lithographic process. These variations result in changes in
device performance characteristics. A total of 40%
variation in effective channel length Leff is expected within
a die [3]. We have found that the use of longer effective
channel lengths tends to increase the wordline and bitline
capacitances in caches, thus increasing access time as
shown in Figure 3. The access time can vary by as much as
2.13X.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

18.72 20.3 21.88 23.73 25.32 27 28.5 30 31.65

Leff (nm)

D
el

ay
 (n

s)

Global Decoder Tristate I/O
CAM Cells Row Sense Amps
Wordline Gating SRAM Cells
Column Sense Amps. Total Cache Delay

Figure 3. Effect of Leff variation on cache delay

2.1.2 Threshold Voltage Variation

Threshold voltage can vary due to (1) changes in oxide
thickness, (2) changes in the dopant levels in the substrate,
polysilicon and implants, and (3) surface charge. Accurate
control of Vth is very important for many performance and
power optimizations and for correct execution [6]. Higher
transistor threshold voltage Vth, due to process variations,
impacts the access time due to the lower read current as
shown in Figure 4. The impact on the access time could be
as much as 2.7X.

2.1.3 Supply Voltage Variation

One of the most important environmental factors that
cause variations in operating condition is supply voltage
(Vdd). In deep submicron technology the supply voltage is
typically scaled down to reduce power consumption;
effects such as the IR voltage drop and L di/dt noise can
affect the voltage level at the power supply thereby
modifying the characteristics of the transistors in the
circuits.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28
Vth (V)

D
el

ay
 (n

s)

Global Decoder Tristate I/O
CAM Cells Row Sense Amps.
Wordline Gating SRAM Cell
Column Sense Amps. Total Cache Delay

Figure 4. Effect of Vth variation on cache delay

A total variation of 15% in Vdd was considered [3] with
a nominal value of 0.9V. Table 2 summarizes our results
showing delay for our cache design. From Table 2, a
reduction in supply voltage causes an increase in the access
time of the cache by up to 12% of the nominal value.

Table 2. Effect of power supply voltage variations
Vdd (V) Delay (ns)

0.83 0.746
0.86 0.717
0.90 0.667
0.93 0.634
0.97 0.601

The deviations in effective channel length and
threshold voltage are shown to have a more significant
contribution to the delay than variations in power supply
voltage. The impact on cache access time due to process
variations and longer wordline/bitline could become very
significant. The access delay could be impacted by around
2-3X (compared to the nominal value) when counting all
the possible process parameters.

2.2 Expected Conditions

The simple use of worst-case values for all parameters
that have been shown in Section 2.2 can result in larger
path delay estimates than typical. These will certainly be
pessimistic but would need to be considered in
conventional designs. Now, the question we try to answer
next is what the delay distribution is in a cache due process
variation?

To accurately predict critical path delay distribution at
the circuit level, cache delay variability can be studied
through Monte-Carlo in HSPICE circuit simulations.
Process variations are typically represented by continuous
probability distributions, and are often assumed as normal
distribution [4].

The distribution of delay of a cache critical path was
determined by performing Monte-Carlo sampling at
different supply voltages, threshold voltages, and transistor
lengths. Under the assumption of separated normal
distributions of Leff, Vth and Vdd variations, Monte-Carlo
simulations verify model predictions over a wide range of
process and design conditions. We have used the Monte-
Carlo simulation with 5,000 trials where the variation
sources all vary simultaneously. We simulate the critical
path and measure delay with all the parameters varying
with 3σ and mean values as specified in Table 3.

Table 3. Parameter values and 3σ variations
Technology 32nm

Device NMOS PMOS
Leff 25.32nm (+-20%)
Vth 0.2V (+-7.5%) -0.21V (+-7.5%)
Vdd 0.9V (+-7.5%)

Temp. 75oC

The probability density function (PDF) of the cache
delay was measured (see Figure 5) for each process
parameter. Also, we have combined all the parameters in
another experiment. We have found most the cache
accesses under the impact of supply voltage or threshold
voltage parameters would be relatively close to the nominal
delay. The deviations in Leff are shown to have a significant
contribution to the delay distribution (wider curve). It is
also very close to the case with all the parameter combined.

Figure 5. Distribution of the cache access latency.

Out of 5,000 random samples, assuming a 1 cycle

cache at 1 GHz, 2,000 samples of the cache accesses are
expected to be faulty, resulting in a probability of failure of

40%. However, with an increased cache delay of 2 cycles
allowed and after adjusting the path across the components
to accommodate a larger variation in the SRAM access, the
probability that this cache will have to take 2 cycles has
been found to be only 25%. This means that in an adaptive
scenario only 25% of the accesses would require 2 cycles.
We have also found that even in this case a small fraction
of accesses would fail suggesting that there are cases that
would need 3 cycles for correctness.

3. Architectural Techniques

At the architectural level, we might be able to help to
mitigate the negative impact of process variation such that
the low-power circuits and designs can still be applied.
There are several ideas that could be exploited to cope with
this problem while not giving up performance. These could
range from utilizing smaller first level caches (that would
meet the preferred access time even under worst case
variation) to more adaptive cache architectures that we will
present next.

3.1 Conservative Cache

As we have shown in the previous section, process
variations affect the latency significantly for each cache
access. The cache access latency difference could be as
much as 3X if we consider all the possible variations in
process parameters. The conservative cache would have to
be based on the worst-case process variation analysis (as
shown in Section 2.1). Alternatively, one could make the
cache access time slightly more aggressive (than the
conservative one) but then the yield would be likely
affected.

In a conservative cache design, to ensure the correct
execution in the pipeline architecture, the cache access
delay cycles must be decided based on the longest delay
possible within the process variation range. For example,
even a small latency increase due to variation may require
the whole cache access latency to be increased by one or
more processor cycles. This can severely degrade the
overall application performance.

For example, even if we could access 90% of the cache
lines within 1 cycle, for the remaining 10%, we might need
2 or 3 cycles to finish the access due to the delay increase
resulting from process variations. In this situation, we
might need to assume the worst-case scenario, which is
three cycles for all the cache accesses. This will, as a result,
severely affect the total performance and is clearly not a
choice that we can live with even if some architectural
tricks could be applied to hide the cost.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0

0.8
07

6

0.8
22

8
0.8

38

0.8
53

2

0.8
68

4

0.8
83

6

0.8
98

8
0.9

14

0.9
29

2

0.9
44

4

0.9
59

6

0.9
74

8
0.9

9

1.0
05

2

1.0
20

4

Cache Delay (ns)

Pr
ob

ab
ili

ty
 D

en
si

ty

Leff Vth Vdd Combine

Nominal

For example, clever scheduling techniques might try to
increase the distance between memory reads and consumer
instructions to hide a longer latency. As we have seen,
however, there is a limit to how much that can help as very
often basic blocks are short and the scheduler cannot move
dependent instructions several cycles away.

3.2 Proposed Adaptive Cache

In the proposed adaptive cache design, instead of
accessing the cache with a long fixed latency assuming
worst-case conditions, the adaptive architecture can have
different access latency for different cache lines. The
typical case analysis encourages efforts towards developing
adaptive design methodologies that suppress the impact of
process fluctuations on performance. The expectation is
that most of the cache lines will have much lower latency
compared to the worst-case scenario.

Figure 6 shows a possible adaptive architecture. One of
the important blocks in the proposed architecture is the
delay storage unit. This unit stores the speed information
and is read along with the data array on every cache access.
The operation on the delay storage has two phases:
classification and execution.

Figure 6. The proposed adaptive cache architecture (shown in

a single 5-stage pipeline).

Delay information for each cache line is first achieved
during a classification process where each cache line is
probed individually and its delay information is written into
the delay storage unit. Then, during the execution phase,

the delay information is fetched from the delay storage and
each cache line can be accessed based on its estimated
speed.

With the addition of the delay storage, we are able to
access the cache with an adaptive speed. The adaptive
architecture will enable us to maximize the performance
compared to the traditional fixed latency cache architecture.

The area penalty for this cache is really minimal as we
only need to use 2 bits (our example with 1-3 cycles
latencies) for each cache line (or 256 bits) to encode the
speed. The sense amplifiers would need to be triggered at
different time points depending on the speed access. In our
analysis, we have evaluated the area overhead associated
with extra BIST, delay storage, and control circuitry by
using the Synopsys Design Compiler CAD tool. We have
found the overall area overhead to be less than 1% of the
total cache area. Because the delay storage is a small
structure, its own delay variation due to process variation is
relatively small compared to the cache.

4. Results and Analysis

The initial adaptive cache architecture is implemented
in SimpleScalar with the simulation parameters
summarized in Table 4. We have conducted simulations of
SPEC2000 benchmarks using the adaptive approach. We
vary the cache access latency from 1 to 3 cycles. The
adaptive cache based on the delay distribution is
determined by the Monte-Carlo simulation. Based on our
analysis, the adaptive cache is expected to have 75% of 1
cycle, 25% of 2 cycles and negligible 3 cycles cache line
accesses.

Preliminary results on application performance are
shown in Figure 7. The comparison is made between a
conservative cache that requires 3 cycles per access and an
adaptive cache that has variable cache access latencies.

Our results show that the adaptive cache design can
achieve a 9% to 21% performance improvement on the
applications studied compared to a conservative design
assuming worst-case latency, while providing resilience
against failures due to process variations. Using the
adaptive cache architecture can also mean that one can set
the clock rate slightly more aggressively: the increase in
clock rate would likely compensate for a larger fraction of
memory accesses falling into higher-latency memory
access categories in a processor. Furthermore, when low
power is important, a slightly slower cache (e.g., due to
asymmetric cell designs with some high Vth transistors to
reduce cell power) would mean a redistribution between 1,
2, and 3 cycle accesses.

Data
Array

CAM
Tag

F D EX MEM WB

Delay
Storage

Adaptive
Controller

Test Mode
Classifier

addr data

Table 4. SimpleScalar parameters for CPU

Instruction Window RUU=16; LSQ=8

Fetch, dispatch, commit width 4

Integer ALU/mult-div 4/1

FP ALU/mult-div 4/1

Number of Banks 16 banks

L1 D-cache Size 16KB, 32-way, 32B blocks,
2 cycles

L1 I-cache Size 16KB, 32-way, 32B blocks,
2 cycles

L2 Unified Cache Size 128KB, 64-way, 4B blocks,
8 cycles

Memory Latency 100 cycles

Memory Ports 2

TLB Size 128-entry, fully assoc., 30-
cycle miss penalty

Branch Predictor

Comb. Of bimodal and 2-
level gshare; bimodal size
2048; level1 1024 entries,

history 10; level2 4096
entries (global)

Branch Target Buffer 512-entry, 4-way

Return-address-stack 8-entry

0

0.5

1

1.5

2

2.5

3

mcf parser equake bzip crafty mesa gcc

SPEC2000 Benchmarks

IP
C

Conservative Adaptive

Figure 7. Performance improvement between the adaptive

cache vs. a conservative cache using 3-cycle access time.

5. Conclusion

Process variations will become worse with technology
scaling; techniques are necessary at the architecture and
circuit levels to reduce the impact of these variations while
providing the highest performance for the given power
constraints. In this paper, we have found significant delay
variation between worst-case and expected behavioral
analysis, motivating us to design adaptive cache
architecture. We have shown that process variation can
have a significant impact on delay (2-3X) under worst-case
operating conditions, while under the expected condition a
large fraction of accesses would be still close to the
nominal value. The adaptive cache architecture proposed
can improve the application performance in a superscalar
design by as much as 21% depending on the application
and configurations used, compared to a conservative
design. The adaptive cache architecture also allows a
designer to choose the main cache access latency more
aggressively and possibly increase the clock rate in a
processor design where cache access is the main critical
path. Furthermore, it could help strike a better balance
between power and delay optimizations in a design.

6. REFERENCES

[1] Predictive technology model. Nanoscale Integration and

Modeling Group at ASU. [Online]. Available: http://
www.eas.asu.edu/~ptm

[2] The standard performance evaluation corporation, 2000.
http://www.spec.org

[3] D. Boning and S. Nassif. Models of process variations in
device and interconnect. In Design of High-Performance
Microprocessor Circuits, A.Chandrakasan, Chapter 6, pp.
98–115, IEEE Press 2001.

[4] K. Bowman, X. Tang, J. Eble, and J. Menldl. Impact of
extrinsic and intrinsic parameter fluctuations on cmos circuit
performance. In IEEE Journal of Solid- State Circuits,
volume 35, pp. 1186–1193, Aug 2000.

[5] D. C. Burger and T. M. Austin. The SimpleScalar tool set,
version 2.0. Technical Report CS-TR-1997-1342, University
of Wisconsin, Madison, June 1997.

[6] X. Tang, V. K. De, and J. D. Meindl. “Intrinsic mosfet
parameter fluctuations due to random dopant placement”.
IEEE Trans. Very Large Scale Integr. Syst., Vol. 5 (No.4): pp.
369–376, 1997.

