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 Abstract—We propose a hybrid spin-charge fabric with 

computation in spin domain and communication in charge 
domain. In nanofabrics based on non-equilibrium physical 
phenomenon like interference of spin waves, switching times 
are lower than the thermal relaxation times leading to fast 
multi-value logic at high fan-in without the exponential 
performance degradation noticeable in CMOS. While 
computation is much more efficient than in CMOS, these 
benefits can be lost due to the communication requirements 
between spin-wave blocks, when implemented with wave 
guides. This inspired a new type of hybrid nanofabric with spin 
wave high fan-in functions connected to an interconnect stack 
similar to CMOS: our analysis shows a delay reduction of up to 
10X (8.64ns) along the critical path for a (511;9) parallel 
counter implemented in this fabric vs. spin-wave only. Similar 
benefits are also shown for a CLA adder with ~4.2ns delay 
reduction for 1024 bit CLA adder. 
 
 Index Terms – Spin Wave Functions, Parallel Counters, 
Magnonic Logic, Hybrid Logic. 
 

I. BACKGROUND 

Fundamental limits on CMOS technology scaling have 
forced researches to explore alternative devices and 
materials for building future nanoscale systems. Devices 
based on novel state variables, materials and integration 
approaches are being actively investigated. Some of the 
promising examples include the spin-FETs [1], nano-wire 
based xnFETs [2][3],  graphene ribbons [4], CNTs [5] , 
MQCA [6], spin waves [7][8][9][10] etc. The primary focus 
in the emerging devices research community is to improve 
the intrinsic characteristics of single devices/switches 
keeping the overall integration approach fairly conventional. 
However, due to high logic complexity and wiring 
requirements, the overall system performance does not scale 
proportional to the performance of individual devices. 
Thereby, we propose a fundamental shift in mindset, to 
make the devices themselves more functional than simple 
switches (see Fig. 1). 

Magnonic logic based on spin waves is one of the 
promising directions for building nanoscale systems. A spin 
wave is a collective oscillation of electron spins in an 
ordered spin lattice around the direction of magnetization in 
ferromagnetic materials. Information may be encoded into 
the phase of the spin wave. Fig. 2 shows the key physical 
components of spin wave based fabrics [7][8]. The Magneto-
Electric (ME) cell is a key component of the proposed fabric. 
It enables voltage control of magnetization which is critical 

for low energy operation. The ME cell is mainly responsible 
for i) I/O coupling ii) Amplification iii) Latching and iv) 
Synchronization. Spin waves propagate and interfere in the 
Spin Wave Bus (SWB). Circuits exploiting wave 
interference enable accomplishing complex logic functions 
such as high fan-in majority function(s) in a single 
computational step. The concept of such magnonic functions 
also called as Spin Wave Functions (SPWFs) was first 
introduced in [11]. Some of the major benefits of designs 
based on SPWFs include i) Low power operation: spin wave 
propagation does not involve physical movement of charge 
particles ii) Implicit latching mechanism: ME cells behave as 
non-volatile implicit latches, thus no separate latches are 
required iii) Design complexity reduction: wave 
superposition principle enables efficient realization of 
threshold/majority logic and finally iv) maintains 
compatibility to CMOS.  

Prior research on spin wave transport parameters has 
shown that the spin wave propagation (in SWB) is inferior to 
charge propagation in conventional copper interconnects. 
Thereby, while we can expect significant logic complexity 
reduction with SPWF-based designs vs. corresponding 
CMOS designs, the interconnect delays between SPWFs can 
be the bottlenecks. This is one of the main design limiting 
factors for spin-only type of fabrics. Moreover, since our 
designs leverage on the high fan-in capability of the SPWF-
based designs, the individual SPWFs are expected to large, 
leading to high interconnect delays. In this work, we evaluate 
how the transport parameters of spin wave propagation (in 
the SWB) would impact the overall circuit level performance. 
In particular, we evaluate parallel counters and adders of 
different size and discuss how these designs would benefit 
from a hybrid spin-charge type of approach where 
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Figure 1. Devices for nanofabrics: (left) conventional switch; (right) 

envisioned device with alternate state variables. 

 
Figure 2. Key physical components of a spin-wave computing fabric. 
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IV. CASE STUDIES 

In this section, we provide our initial analysis on 
projected benefits of such hybrid logic for arithmetic circuits 
like adders and parallel counters. Many other arithmetic 
circuits and cryptographic algorithms would also similarly 
gain from this approach. Benefits are evaluated based on the 
length of interconnect SWB on the critical path of these 
designs. It should be noted that, a delay reduction of 10X is 
assumed for metal vs. SWB interconnects as per the 
arguments presented in section III. 

A. Hybrid Parallel Counters 
As mentioned in section II, parallel counters are mainly 

used in design of fast parallel multipliers for partial product 
reduction. Several algorithms have been proposed to identify 
the optimal type of parallel counter and the corresponding 
reduction sequence for partial product reduction [20]. It is 
observed that with the use for large parallel counters, the 
number of reduction steps reduce. However, with increased 
counter size, the CMOS based implementation complexity 
significantly increases. Thus, in practice, counter sizes are 
limited to (7;3) or a variant of counters namely (4;2) 
compressors are used. However, since SPWFs enable 
efficient realization of high fan-in logic, higher order 
counters can be efficiently implemented using SPWFs. But, 
as mentioned earlier, due to large size of the SPWFs and due 
to slow spin wave propagation velocity, interconnects delays 
may limit the overall performance. 

Fig. 6 shows a simplified design of (511;9) counter using 
SPWFs. Equation (1) gives the interconnect length (LPC) 
along the critical path for a given counter of size (N), ME cell 
width (LME) and spacing (S). It was observed that for a 
(511;9) counter, a delay reduction of up to 8.6ns is possible 
with the hybrid logic (without pipelining). Fig. 8.a also shows 
that even higher benefits can be obtained as the counter size 
increases. 

 LPC ൌ ሺܭ െ 1ሻ ቂሺேାሻሺಾಶାௌሻଶగ ቃ , ൌ ܭ ݁ݎ݄݁ݓ  logଶሺܰ  1ሻ           (1) 

B. Hybrid CLA adders 
The fundamental principle in CLA adders is to generate 

all intermediate carries in parallel. The operation of the CLA 
adders is based on the generate (G) and the propagate signals 
(P). The general expression for carry generation is given by 
equation 2.  ܥାଵ ൌ ܩ  ିଵܩ ܲ  ିଶܩ ܲିଵ ܲ  ڮ  ܥ ܲ ଵܲ … ܲ           ሺ2ሻ  

Where Gi= xi.yi and Pi = xi+yi  

Thereby, all intermediate carries can be generated in 
parallel using the above 2-level logic equation. However, 
since the fan-in for CMOS gates is practically limited to 3 or 
4, multi-level carry look-ahead units are generally used for 
high bit-width adders. In general, for a ‘N’ bit adder, with ‘k’ 
as the max individual gate fan-in, the number of levels (m) of 
CLA is given by ݉ ൌ   .݈ܰ݇݃

However, adders based on SPWFs (with support for high 
fan-in) can realize eq. 2 with a direct 2 level logic. The OR 
function and the last term in the SOP equation (eq. 2) require 
max fan-in and these terms would require largest SPWFs for 

 
Figure 6. Simplified layout of (511;9) parallel counter using 9 high fan-in SPWFs.  In this example, the max fan-in of SPWFs is 519, which includes 511 
input bits and 8 feedback signals. Picture also highlights interconnects on the critical path that can be realized using the proposed hybrid 3D approach. In 

this, ME cells will connect to standard pins that will connect to the metal layers similar to CMOS. 

 
Figure 7. Simplified carry look ahead generation block for CLA adders. 

In this case, SPWFs with fan-in equal to the adder bit-width will be 
required. The interconnect along the critical path that can be realized 

using hybrid approach is also highlighted here. 



the CLA adders. Fig. 7 shows the simplified SPWF based 
implementation for the carry look ahead equation. The delay 
of this structure is mainly limited by the 2 largest SPWFs 
shown in Fig. 7 and the interconnect distance between them. 
For such a design, we leverage on the opportunity of using a 
possible hybrid metal interconnect to improve the overall 
performance. Eq. 3 gives the length (LCLA) along the critical 
path that is replaced with metal interconnects for a N-bit 
CLA adder. The corresponding results for delay reduction for 
various sizes of CLA adders are shown in Fig 8.b. LCLA ൌ  ܰሺܧܯܮ  ܵሻ ൗ ߨ                                   ሺ3ሻ 

It should be noted that such a hybrid approach may not be 
suitable/beneficial for all (local and global) interconnects in 
the design. This is due to the fact that additional delay may be 
required for converting signal from spin to charge domain 
and vice-versa. Moreover, current experimental progress 
indicate a relatively large ME cell delay of 100ps. This would 
require additional analysis on trade-offs between the 
granularity of such hybrid interconnects and the overall ME 
cell count.  

V. CONCLUSIONS 

Wave interference phenomenon based SPWF logic enables 
realization of high fan-in functions efficiently and is one of 
the promising alternatives for building future nanoscale 
systems. While significant benefits can be expected with 
these designs, interconnect delay on the global interconnects 
can be the performance bottleneck. This is mainly due to low 
propagation velocity of spin waves vs. metal interconnects. 
We propose hybrid designs with computation in spin domain 
and communication in charge domain with ME cells 

providing the essential interface mechanism between the two 
domains. Critical path based analysis is provided for 
representative arithmetic circuits like CLA adders and 
parallel counters. Our analysis shows a delay reduction of up 
to 8.64ns along the critical path for a (511;9) parallel counter 
implemented in this fabric vs. spin-wave only. Similar 
benefits are also shown for a CLA adder with ~4.2ns delay 
reduction for 1024 bit CLA adder. In future we plan to 
analyse the trade-offs between the granularity of such hybrid 
interconnects, ME cell count, complexity and overall delay. 
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Figure 8. a) Delay reduction for various sizes of SPWF based parallel 
counters b) Delay reduction for various bit-width CLA adders (ME cell 

size = 100nm and spacing = 45nm). Plots show that higher order 
counters and high bit-width adders benefit increasingly more from the 

proposed hybrid nanofabric design. 


