Accelerating Simulation-based Inference with
Emerging Al Hardware

Abstract—Developing models of natural phenomena by cap-
turing their underlying complex interactions is a core tenet
of various scientific disciplines. These models are useful as
simulators and can help in understanding the natural processes
being studied. One key challenge in this pursuit has been to
enable statistical inference over these models, which would allow
these simulation-based models to learn from real-world observa-
tions. Recent efforts, such as Approximate Bayesian Computation
(ABC), show promise in performing a new kind of inference
to leverage these models. While the scope of applicability of
these inference algorithms is limited by the capabilities of
contemporary computational hardware, they show potential of
being greatly parallelized. In this work, we explore hardware
accelerated simulation-based inference over probabilistic models,
by combining massively parallelized ABC inference algorithm
with the cutting-edge AI chip solutions that are uniquely suited
for this purpose. As a proof-of-concept, we demonstrate inference
over a probabilistic epidemiology model used to predict the
spread of COVID-19. Two hardware acceleration platforms are
compared - the Tesla V100 GPU and the Graphcore Mark1 IPU.
Our results show that while both of these platforms outperform
multi-core CPUs, the Mkl IPUs are 7.5x faster than the Tesla
V100 GPUs for this workload.

Index Terms—Approximate Bayesian Computation, COVID-
19, epidemiology, hardware acceleration, high performance com-
puting, likelihood-free inference, simulation-based inference.

I. INTRODUCTION

Models that simulate the natural processes being studied
are central to progress in a multitude of scientific domains.
The domains span a vast scale of natural phenomena - from
particle physics and molecular biology to epidemiology and
cosmology [1]]. These simulator models encode our current
understanding of the processes involved, and allow us to gen-
erate data from them. While key for scientific progress, these
simulator models are not conducive to statistical inference,
which could enable them to learn and modify themselves to
better fit real-world experimental data. This incompatibility
stems from the intractability of computing the likelihood
function for these models - which is a function that provides
the probability density of an observation w.r.t the model. To
compute this function for these simulator models, one needs
to perform an integral over all possible execution trajectories,
which is often impossible.

This limitation has led to development of new inference
methods, that can leverage the simulation capabilities of the
models while also not requiring computation of the likelihood
function. Such methods belong to a new class of statisti-
cal inference, often known as simulation-based inference or
likelihood-free inference. These new methods have been suc-
cessfully applied to some real-world models, but their use in

large-scale applications is still limited due to the computational
requirements. One such simulation-based inference method
considered in this work is Approximate Bayesian Computation
(ABO) [2].

In this work, we develop a parallelized ABC inference
implementation for a typical scientific simulator model - a
stochastic epidemiology model used to understand and predict
the spread of COVID-19 [3||]. The parallelization of ABC
inference makes it amenable to acceleration with the mas-
sively parallel hardware platforms that are specialized in vec-
tor computations. Two such hardware acceleration platforms
are considered - a Tesla V100 GPU and an emerging Al
acceleration solution, the Graphcore Intelligence Processing
Unit (IPU). We explore the limits of parallelism provided
by the hardware platforms and provide insight over the steps
involved in efficient parallelization and hardware acceleration
of scientific simulator models. In our analyses, we found that
while both GPU and IPU outperform high-core count Xeon
Gold CPUs, the IPU based solution performed 7.5x faster
than GPU. This suggests that the IPU’s architecture may be
uniquely suited for this workload. The speedup and efficiency
of the parallelized ABC inference algorithm coupled with
hardware acceleration could be translated to a wide variety of
scientific simulator models, hence providing a new impetus to
this exciting field. The paper is organized as follows: Section [[I]
provides background and related works in epidemiology, ABC,
and a brief overview of the new IPU technology. Since this
is a multidisciplinary work, some important terminology will
also be introduced. Section shall discuss the process of
parallelizing the ABC algorithm for inference for the epidemi-
ology model. Section [[II-B| shall provide insights on the steps
involved in supporting the parallelized ABC inference on CPU,
GPU, and IPU. Section shall talk about the experimental
methodology used to evaluate the three platforms for their
performance on the epidemiology model. In Section [[V]results
are presented and discussed. Section [V] concludes the paper.

II. BACKGROUND AND MOTIVATION

Since this work spans multiple disciples from epidemiology
to Bayesian statistics and computer architecture, it is important
to establish the terminology being used. A scientific simulator
model is represented as a joint probability distribution p(6,)
where 6 denotes the set of parameters that we are interested in
inferring, and x denotes the observed variables of the model,
for which there typically is real-world experimental data to
compare to. The prior knowledge about the parameters is
encoded in their prior, denoted by m = p(6). The process

of generating simulated data D from the model is denoted
as Ds ~ p(x]@). The updated parameters 6 by conditioning
on observed data D, known as the posterior, is denoted by
p(0]z = D), or concisely as p(8]|D). The likelihood function
is denoted by p(xz = D|#), or concisely, p(D|6). Based on this
terminology, the epidemiology model and the ABC inference
process are discussed next.

A. Stochastic Epidemiology Model

The Covid-19 model [3[] used as an example for simulation-
based inference, contains 8 parameters:

9:[a0,a,n,ﬂ,’y,5,u,ﬂ] (1)

Their priors are set to Uniform distributions:

7(':])(9) = U(Ov [1710();27171713172]) (2)

These prior values were taken as-is from the original model
description [3]]. They signify the reasonable ranges in which
the parameters of interest could lie. The model simulation
provides the following state vector

X =[S,I,A,R,D,R"], 3)

which consists of the sub-populations of Susceptible people,
undocumented Infected, Active confirmed cases, confirmed
Recoveries, confirmed cases Dying, and Unconfirmed recov-
eries/deaths. The model is summarized in Fig[l]

One of the key challenges of this model is that X is partially
observed; i.e. only the A, R, D values are available from
observed data. This makes the likelihood function P(D|0)
intractable for this model, as the unobserved sub-populations
of the model are required to be ’integrated-out’. Instead,
simulation-based inference such as ABC is used to perform
inference over this model.

The underlying COVID-19 time-series data, provided by
Johns Hopkins University [4], contains daily numbers for
[A, R, D].

In its first step, the model initializes the remaining variables
with R* :0, I() :I{*A(), and S:P—(A+R+D+I)
with P being the total population count at the first time point.

The second step is to calculate the hazard function ~ which
provides the average update in the model parameters within
one day

h(S,I,A,R,D,R") = (gSJi,’yI, BA,(SA,BVI) @
with ¢ = ag + m. Depending on the intention of
the statistical analysis, g can look more complicated.

The third step is to randomly sample according to these
average numbers. Instead of a Poisson sampling with h as
parameter, we chose an approximation with normal distribu-
tions with mean h and variance v/ and use the floor of the
numbers.

The fourth step is to apply the simulated numbers to obtain
simulated numbers for the next day (S — I, I - A, A — R,
A — D, I — R", ordering according to h function).

The second to fourth step are repeated in a loop for each
day. Eventually, the numbers for A, R, and D can be compared
to the real measurements.

Real-world use-cases of epidemiology models: The epi-
demiology models being used serve two main purposes —
providing predictions and understand underlying process to
better handle the spread. The former use-case requires a
typically simpler model which can be re-trained daily to
provide updated predictions[ﬂ while the latter requires more
complex models with a nuanced parameterization to for de-
tailed analysis, but these would be updated less frequentlyﬂ It
is possible that providing avenues of acceleration of complex
models, such as this work aims to, would allow for more
complex models to be updated daily hence providing better
analyses and predictions.

B. Approximate Bayesian Computation (ABC)

If we were just interested in the best configuration for
6 (see Eq.(I)) that matches the simulation, we could run
any optimization algorithm. Instead, we want to quantify the
uncertainty in 6 for statistical analysis and arguments. The
standard Bayesian statistical inference approach of calculating

p(D|0)p(9)
p(D)

is not applicable. As discussed earlier, the likelihood function
p(D|6) is intractable, since Sy, I;, and R} are unknown.
Hence, we take the ABC approach, where the ability to simu-
late from the model is utilized to perform inference on it. First,
we sample the parameters 6 from their prior 6* ~ 7. Next, we
simulate the model to generate observations Dy ~ p(x|6*).
The simulated observations are then compared to the real-
world evidence using a distance function dist(Ds, D). For
this model we used the Euclidean distance [3]. Finally, the
sampled parameters 6* are accepted if the distance function
is less than a certain tolerance value ¢, dist(Ds, D) < €. This
is repeated until we accept the number of samples required.
In essence this ABC process is sampling parameters from
the approximate posterior of the model given the data while
effectively circumventing the likelihood function. From an
information-theoretic perspective, as tolerance e approaches 0,
the approximate posterior converges to the true posterior [2f].

To summarize, in ABC we aim to obtain samples from an
approximation to the posterior:

p(0|D) = (5)

p(0]D) = p(0|dist(D, D) < €) < P(dist(D, Ds) < €)p(0)
(6)
where D is the ground truth data, D, is simulated data
depending on 6, and p(0) is the prior [3]]. The dist function is
the Euclidean distance [3]].

Thttps://covid 19-projections.com/
Zhttps://covid19.healthdata.org/united-states-of-america

(0%
"1+U(A R, D)
Undocumented

Infected

(1)

Susceptible
(S)

Confirmed Deaths

(D)

Confirmed Active
(A)

Confirmed
Recovered

(R)

Undocumented
Recovered
(Ru)

Fig. 1. Overview of the epidemiology model flow. The population of a nation is divided in 6 sub-populations. On a per-day basis, the number of transitions
from one sub-population to the other are simulated with a Poisson process, where the rates are governed by the current sub-populations and the transition

parameters.

Instead of choosing a fixed threshold, sequential Monte
Carlo can be used to transform an initial set of samples to
a high quality set with a decreasing sequence of thresholds ¢
and using ABC. This algorithm is called SMC-ABC [3], [5].

C. Hardware Acceleration Platforms

1) Tesla VIOO GPU: The current go-to for hardware ac-
celeration for Al applications is the Tesla V100. It is an Al-
focused hardware acceleration platform from Nvidia, being
widely used in various workloads. It consists of 640 Tensor
Cores and 5120 CUDA cores. The solution has a reported
112 TFLOPS of tensor performance and 900GB/s memory
bandwidth, with a TDP of 300W[]|

The Tesla V100 has shown superior performance in a lot of
benchmarks like MLPerf [6]]. Hence, it is a reasonable choice
to test if it can accelerate the ABC algorithm.

2) Intelligence Processing Unit (IPU): For the evaluation
we have used a machine with Graphcore’s IPU chips. We run
the computations on one C2 card, which is a PCle accelerator
card with two Mk1 (first generation) IPU processors in it. A
C2 card also has a TDP of 300W.

The TPU is a MIMD (multiple instruction, multiple data)
processor. It is well suited for problems that require fine-
grain parallelism and high-speed memory access. In particular,
models that use autoregressive or sequential elements, employ
random memory access patterns, or consist of non-vectorizable
parallel paths, can highly benefit from the IPU architecture.
Additionally, there is hardware support for random number
generation, which is relevant for the application in this paper.

3https://www.nvidia.com/en-us/data-center/v100/

Each Mkl TPU processor can run up to 7,296 independent
parallel threads. The bandwidth between the compute and the
memory on the chip is 45 TB/s. IPU-Links are used to connect
multiple IPUs together for model-parallel and data-parallel
execution.

There are three motivations to analyze IPU performance on
ABC. First, currently mostly large amounts of CPUs are used
for processing. Taking advantage of the independent parallel
processes on the IPU can drastically reduce energy consump-
tion and increase performance. Second, the simulation and
ABC algorithm fit in the SRAM memory of the Mkl IPU,
which drastically reduces the communication overhead and
enables a perfect in-processor computation. Last but not least,
there are several new applications with rather complicated
computational graphs that are not just based on large scale
matrix multiplications, where the IPU showed significant per-
formance gains. Examples are natural language processing [7]],
image processing [8]], bundle adjustment [9]], as well as some
microbenchmarks [[10].

I1I. DESIGN METHODOLOGY
A. Parallelizing ABC inference for Epidemiology Model

In the ABC inference process described in Section and
the computational flow of sampling the parameters to
computing the distance function can be performed indepen-
dently. This is because the specific considerations typically
required in concurrently running Bayesian statistical inference
algorithms, such as burn-in, auto-correlation, detailed balance,
and Independent and Identically Distributed (IID) sampling
constraints are either not applicable or easily addressed. This

provides us the opportunity to massively accelerate the ABC
inference process by following an embarrassingly parallel
compute flow to form a batched version of ABC (see Fig[2),
without making any fundamental changes to the algorithm
itself, while still maintaining asymptotic convergence guar-
antees on the tolerance. Hence, we express this data-level
parallelism in the ABC algorithm by explicitly vectorizing it
across a batch of parameter samples, and still have confidence
that given sufficiently low tolerance value, the true posterior
would be estimated with equal accuracy to the regular ABC.
Such vectorized simulation flow is well-supported by the Ten-
sorFlow programming style, and allows us to utilize not only
the IPU’s MIMD architecture, but also the single-instruction-
multiple-data (SIMD) architecture of GPUs.

Hence for the epidemiology model discussed in Sec-
tion the original ABC algorithm would involve gen-
erating a single joint sample of parameters 6 of the size
[8], and generating data D of size [3,num_days] (i.e. A,
R, D values over the number of days being simulated) and
then compare with real data. In the new parallelized ABC
algorithm, we sample multiple (batch size of 100k or more)
parameters 6 by the explicit vectorization size [100000, 8],
simulate the resulting data Ds; which would be vectorized
with size [100000, 3, num_days], and compare the resulting
simulated dataset with the ground truth dataset D to a given
tolerance level e. At the end we calculate the number of
accepted samples and iterate until a given required total
number of accepted samples is obtained.

B. Hardware Optimizations for Accelerating ABC Inference

“XLA (Accelerated Linear Algebra) is a domain-specific
compiler for linear algebra that can accelerate TensorFlow
models with potentially no source code changes.”

XLA runs multiple optimization and analysis passes over
the Higher Level Optimization (HLO) representation of the
computational graph. The core feature of XLA is fusing
operations to more powerful operations. Thus, it can improve
memory management as well as execution speed. Apart from
target device independent optimizations, there is also a device
specific optimization, e.g., to optimize the graph for a GPU or
TPU. This optimized XLA representation is also designed as
interface to other hardware platforms. Here, the IPU performs
its own optimizations and enables a mapping of the computa-
tional graph to a lower level code representation that can be
eventually executed on the IPU.

Using

@tf.function (experimental_compile=True)

a TensorFlow function can explicitly be marked for com-
pilation. Alternatively, TF_XLA_FLAGS can be used at
command-line level. PyTorch can be also used as frontend
for XLA. If it is not possible to infer the dimensions of all
tensors without actually running the code, a function cannot
be XLA compiled. Hence, not every functions is supported by
XLA, like for example tf.unique.

“https://www.tensorflow.org/xla

P
Ds Se

| o Model
Simulation

Appr

ey Posterior

True Data

&

—\
.] i
H Prior 2 . MOde.I D's‘“'?“ Approximate

Simulation Function Posterior

\ J
<e¢
6n . Mode_l Distance
Simulation Function

True Data J

Fig. 2. A conceptual representation of parallelizing ABC inference to batched
ABC inference. The sampling from prior, model simulation and distance
computation are all embarrassingly parallelized, and this can be accelerated
with supporting hardware.

We were interested in comparing computation time for
CPU, GPU, and IPU. For the GPU and IPU, XLA compi-
lation is crucial for the performance. Since there is no XLA
implementation for Poisson sampling, we used a supported
approximation based on the normal distribution.

Poisson()).get() ~ floor(Normal(mean = X, std = v/)).get())
(M

The “floor” term comes from the continuity correction of
+0.5 and the rounding to integers. The “get” part refers to
generating a sample from the distributions. For A > 10, this
is a common and good approximation. For parameter A, this
constraint is fulfilled since day one, for parameter R since day
7 and for parameter D since day 9. The initial days are less
relevant because the respective numbers are rather small and
influence the error measurement only marginally.

Switching from normal code to XLA compiled code, im-
proved GPU throughput by a factor of 5.

For the IPU, code and processed data are kept in memory.
To make optimal use of the processing power, the batch size
has to be selected in a way that everything fits in memory.
It is crucial to use a large batch size to make sure that the
processing power of the IPU is taken advantage of. For the
given model, the optimal batch size was 100k. Up to 130k
could be used but did not show a performance advantage, since
in that case the compiler was optimizing for memory instead

TABLE I
PERFORMANCE COMPARISON

Device Batch Size | Tolerance | Accepted Total Time | Time per Run || Relative Run Performance vs.
Samples (s) (ms) || IPU | GPU | CPU

2xIPUs 2x100k 2E+05 100 221 £0.17 4.63 + 0.01 1.00 | 7.59 31.37

Tesla V100 500k 2E+05 100 14.87 £+ 0.01 87.99 + 0.04 || 0.13 1.00 4.13

2x Xeon Gold 6248 M 2E+05 100 67.87 £ 7.27 | 726.93 + 6.01 0.03 0.24 1.00
2xIPUs 2x100k 2E+05 1000 21.78 + 0.74 4.63 + 0.01 1.00 | 7.39 30.16

Tesla V100 500k 2E+05 1000 154.61 + 0.04 8547 +£0.02 || 0.13 1.00 4.08

2x Xeon Gold 6248 IM 2E+05 1000 660.48 + 8.74 | 697.61 + 4.87 || 0.03 0.25 1.00
2xIPUs 2x100k 1E+05 100 78.34 £+ 3.94 452 +£0.00 || 1.00 | 7.55 30.42

Tesla V100 500k 1E+05 100 551.57 £ 0.20 8529 £0.04 || 0.13 1.00 4.32

2x Xeon Gold 6248 M 1E+05 100 2383.10 &+ 139.01 | 693.31 £ 4.71 || 0.03 0.25 1.00

of speed.

For distributing the processing over two IPUs, two changes
were made to the model implementation. First, we use outfeeds
to stream the results to the host, which are the sampled
parameters and the resulting distance measurements between
simulated and real data. Second, we sum the number of
accepted samples across the two IPUs after each batch run.
We stop iterating as soon as the requested number of samples
is obtained.

IV. RESULTS AND DISCUSSION
A. Performance

The experimental setup for performance comparison was
as follows: For every performance experiment, run “batch
size” simulations in parallel (vectorized), check how many
parameters result in an error lower than the folerance threshold
which would give us the number of samples accepted in one
run. The simulations are repeated until the total number of
accepted samples exceeds the requested value (100 or 1000).

For our experiments, we use the data of Italy for 49
days, starting at 2020-02-23, the first day with more than
100 active confirmed cases (Ag). We explored inference with
two tolerance values, and two different numbers of accepted
samples. The optimal batch size for the IPU was selected as
the largest batch that can fit the IPU memory, which was
100k per IPU. For GPU, we explored several batch sizes
and we chose 500k as the most optimal (see Table).
All experiments were performed 10-fold to capture run-to-
run variance. For this performance evaluation, we excluded
the time that would be required to collect accepted samples
for both GPU and CPU. For the IPU the samples were sent
back asynchronously using I/O buffers and this was included
in the run-time. The results are displayed in Table |} For time
measurements, we provide mean and standard deviation of

TABLE 11
BATCH SIZE PERFORMANCE FOR GPU, 100 SAMPLES AT € = 2.0FE + 05

[Batch Size | Total Time (s) |

200000 16.92
500000 14.87
1000000 18.66

the 10 recorded values in each setting. The most important
number is the total time. We also provide the time per each
iteration loop (Time per Run). We can see clearly that the CPU
performs worst and the IPU shows the best performance. The
total time has a large variance because of the randomness in
the parameter generation and the simulation. So a better tool
for comparison is the more stable Time per Run. However,
it clearly scales with the batch size. Hence to calculate the
Relative Run Performance, we normalized the Time per Run
by the Batch Size before determining the speedup. The IPU is
around 7.5 times faster than the GPU which itself is around
4 times faster than the CPU.

As a side node, we also observed a significant speed-up in
GPU performance with XLA, which is still in experimental
stage at the time of writing. While official numbers suggest
that XLA could provide up to 50% increase in performance,
we observed a ~5x increase in this model. We reported the
XLA accelerated times.

Due to the parallelized computation scheme that contains
several matrix operations, it is expected that the ABC inference
can be accelerated by specialized hardware like GPU and IPU.
The superiority of the IPU compared to the GPU is reasonable
due to the difference in the architecture. ABC inference has
an autoregressive aspect, since the day to day steps have to
be performed in sequence. Faster in-processor memory access
allows IPU to execute such workloads more efficiently. With
all the input data residing on chip, there is no communication
overhead to transfer data between external memory and ac-
celerator hardware that is slowing down the data processing.
Instead, the IPU can benefit from the fast communication
within the chip and exploit localized computation.

B. Simulation and Correctness of Computations

In Figure [3] we compare the resulting model trajectories to
the ground truth. We used two different tolerance levels and
generated 100 samples from the IPU. Afterwards, we repeated
the simulation again with these 100 samples and visualized the
resulting statistics of the trajectories (median and percentiles).

We can see clearly that the simulation matches the trajectory
on the training data, especially given that we ran a new
simulation and did not choose the trajectory generated during
the acceptance run. The accuracy of model’s predictions holds

5
© 10
=
=]
£ Observed
3
10 Median predicted
T T
100 120
o 10° 1
o
[0
=3
S 102 Observed
& Median predicted
T T
100 120
[u)
=
T
& —— Observed
—— Median predicted

T T
0 20 40 60 80 100 120

—
¢ 10° +
=
2 —— Observed
103 —— Median predicted
: T .
80 100 120
54
g 10
[
>
2 1024 —— Observed
& —— Median predicted
T T T T . T T
0] 20 40 60 80 100 120
10°% | i
“ M
= B
& 107 A :
& : —— Observed
—— Median predicted

T T T
o] 20 40 60 80 100 120

Fig. 3. Trajectories from ABC simulation. This graphic compares simulated and measured cases of tested COVID-19 cases (“Active”), recoveries, and deaths
over a time period of 120 days. The x-axis shows the time dimension of the data in days. The dotted line separates between original training data of 49 days
(left) and more testing data (right). The prediction is generated with 100 accepted samples and tolerance of 5.00F + 04 (left) 1.00E + 05 (right) from the
IPU and rerunning the simulation with these parameters. The shaded colored area covers the area between 95% and 5% percentile of the values between the
different simulations. The lower tolerance leads to significantly lower bounds and better accuracy in model predictions.

really well for almost a month into the future before there are
visible divergences. In case of the predictions in recoveries, the
plot with tolerance 5.0F + 04 exactly matches the observed
data through all the three months of the simulation. This ver-
ifies the model as well as correctness of our implementation.
This plot denotes what the model would have predicted 49
days after 2020-02-23, given the conditions at that time.

The slight divergence after the training suggests that among
all the reasonably possible trajectories of COVID-19 cases in
Italy, the country managed to employ measures which suc-
cessfully resulted in more favourable outcomes. However, the
objective of the algorithm is not to predict correctly the future
but rather provide a distribution of reasonable parameters that
describe the training data. The benefit comes from contrasting
these distributions between different datasets like a different
country or a different time after an intervention.

It is also worth noting that these simulations were generated
from a model trained at a tolerances of 1.00E + 05 and
5.00F + 04, and have a min-max range of ~ 100x and ~ 20x
respectively. Typically, the real-world models would require
tighter bounds of ~ 10 — 5x. This would require training the
model on lower tolerance values, i.e. closer to 5.00F + 04,
which is much more compute intensive, as discussed further
in the next subsection.

C. Scalability Analysis

From Table [IL we can see how compute time scales with
number of accepted samples as well as with reduced tolerance.
Increasing the sample size roughly scales linearly. Reducing
the tolerance level however drastically increases the total time.
The increase in run-time and decrease in target tolerance
seems to follow a power-law relationship (super-exponential).
We capture this relationship in the plot shown in Figure

As discussed in earlier sections, to reduce the confidence
bounds of the simulator, a move to lower tolerance would be
required. Initial experiments with the IPUs for target tolerance
5.00E + 04 show that the time to collect 100 samples is
~ 1.8F + 04 seconds, i.e. ~ 5 hours. From our performance
comparisons from table |l the extrapolated run-time for the
same tolerance for GPU and CPU would be ~ 35 hours
and ~ 155 hours respectively. This run-time difference can
determine the ability to provide daily updates from the model.

Runtime Increase with Decreasing Tolerance
100

3

10

Time to accept 100 samples (s)

0.1

3.50E+05 3.00E+05 2.50E+05 2.00E+05 5.00E+04

Tolerance

1.50E+05 1.00E+05

Fig. 4. Scaling of computation time with decreasing tolerance values. As the
tolerance decreases, the increase in computation time to accept 100 samples
increases super-exponentially. Displayed values are averages across 10 runs
on two Mkl IPUs .

V. CONCLUSION AND FUTURE WORK

For exploring different hypotheses, e.g., for contrasting
different approaches of COVID-19 response, it is crucial to
enable researchers to do fast iterations of simulations and

models. In this paper, we showed that the ABC-algorithm,
that is used in this field, can be significantly accelerated using
hardware that is specialized for processing algorithms that can
be described in a form of computational graph. We showed that
the IPU can deliver a speedup up to ~30x versus CPU and
~7.5x versus GPU.

In this paper, we focused on the ABC algorithm itself. How-
ever, ABC is usually combined with adaptive sequential Monte
Carlo sampling in SMC-ABC. Further acceleration through
algorithmic innovations such as these is left for future work.
Another relevant topic is exploration of the next generation
chip, the Mark2 IPU. Its hugely increased memory could allow
processing of significantly larger batches of parameters, and
result in even higher speedups.

While we consider the epidemiology model and ABC
inference for this work, we believe that the proposed approach
should generalize to several other scientific models. The
models that would benefit the most from this approach would
have the following characteristics: i) a relatively small number
(< 100) of parameters of interest (even though high numbers
of observations would be possible), ii) complex mathematical
operations and multiple intermediate stochastic dependencies,
and iii) involve simulating the (usually temporal) evolution of
a system. There is a large number of simulation models in a
wide variety of scientific domains that satisfy those conditions.
Examples include elementary particle interaction simulations
in particle accelerators [11]], protein folding simulations [12],
genome-wide association studies [13]], macroeconomic simu-
lations [14]], galactic and cosmological gravitational simula-
tions [15], and cosmic microwave background studies [16],
etc. Most of these applications are compute intensive and
typically require use of supercomputers, hence any hardware
acceleration benefits achieved would have a significant impact
on those domains.

ACKNOWLEDGMENT

The access to IPU servers used to generate the results for
IPUs and Xeon CPUs was generously provided by CirrascaleE]

REFERENCES

[11 K. Cranmer, J. Brehmer, and G. Louppe, “The frontier of simulation-
based inference,” Proceedings of the National Academy of Sciences,
2020. [Online]. Available: https://www.pnas.org/content/early/2020/05/
28/1912789117

[2] M. Sunndker, A. G. Busetto, E. Numminen, J. Corander, M. Foll,
and C. Dessimoz, “Approximate bayesian computation,” PLOS
Computational Biology, vol. 9, no. 1, pp. 1-10, 01 2013. [Online].
Available: https://doi.org/10.1371/journal.pcbi. 1002803

[3] D. J. Warne, A. Ebert, C. Drovandi, A. Mira, and K. Mengersen,
“Hindsight is 2020 vision: Characterisation of the global response to the
COVID-19 pandemic,” medRxiv, p. 2020.04.30.20085662, may 2020.

[4] E. Dong, H. Du, and L. Gardner, “An interactive web-based dashboard
to track COVID-19 in real time,” pp. 533-534, may 2020.

[5] C. C. Drovandi and A. N. Pettitt, “Estimation of Parameters for
Macroparasite Population Evolution Using Approximate Bayesian
Computation,” Biometrics, vol. 67, no. 1, pp. 225-233, mar
2011. [Online]. Available: http://doi.wiley.com/10.1111/j.1541-0420.
2010.01410.x

Shttps://cirrascale.com/graphcore-cloud.php

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

P. Mattson, C. Cheng, C. Coleman, G. Diamos, P. Micikevicius, D. Pat-
terson, H. Tang, G.-Y. Wei, P. Bailis, V. Bittorf, D. Brooks, D. Chen,
D. Dutta, U. Gupta, K. Hazelwood, A. Hock, X. Huang, A. Ike,
B. Jia, D. Kang, D. Kanter, N. Kumar, J. Liao, G. Ma, D. Narayanan,
T. Oguntebi, G. Pekhimenko, L. Pentecost, V. J. Reddi, T. Robie,
T. S. John, T. Tabaru, C.-J. Wu, L. Xu, M. Yamazaki, C. Young, and
M. Zaharia, “Mlperf training benchmark,” 2019.

A. Wagner, T. Mitra, M. Iyer, G. Da Costa, and M. Tremblay, “Position
Masking for Language Models,” ArXiv, June 2020. [Online]. Available:
http://arxiv.org/abs/2006.05676

1. Kacher, M. Portaz, H. Randrianarivo, and S. Peyronnet, “Graphcore C2
Card performance for image-based deep learning application: A Report,”
ArXiv, feb 2020. [Online]. Available: http://arxiv.org/abs/2002.11670

J. Ortiz, M. Pupilli, S. Leutenegger, and A. J. Davison, “Bundle
adjustment on a graph processor,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), June
2020.

Z. Jia, B. Tillman, M. Maggioni, and D. P. Scarpazza, “Dissecting
the Graphcore IPU architecture via microbenchmarking,” ArXiv, vol.
abs/1912.03413, 2019.

C. Collaboration, S. Chatrchyan, G. Hmayakyan, V. Khachatryan,
A. Sirunyan, W. Adam, T. Bauer, T. Bergauer, H. Bergauer, M. Drag-
icevic et al., “The cms experiment at the cern lhc,” 2008.

F. Liang and W. H. Wong, “Evolutionary monte carlo for protein folding
simulations,” The Journal of Chemical Physics, vol. 115, no. 7, pp.
3374-3380, 2001.

B. Peng and C. I. Amos, “Forward-time simulation of realistic samples
for genome-wide association studies,” BMC bioinformatics, vol. 11,
no. 1, pp. 1-12, 2010.

J. D. Sachs and N. Roubini, “Sources of macroeconomic imbalances
in the world economy: a simulation approach,” National Bureau of
Economic Research, Tech. Rep., 1987.

R. E. Sanderson, A. Wetzel, S. Loebman, S. Sharma, P. F. Hopkins,
S. Garrison-Kimmel, C.-A. Faucher-Giguere, D. Kere§, and E. Quataert,
“Synthetic gaia surveys from the fire cosmological simulations of
milky way-mass galaxies,” The Astrophysical Journal Supplement
Series, vol. 246, no. 1, p. 6, Jan 2020. [Online]. Available:
http://dx.doi.org/10.3847/1538-4365/ab5b9d

M. Liguori, S. Matarrese, and L. Moscardini, “High-resolution simula-
tions of non-gaussian cosmic microwave background maps in spherical
coordinates,” The Astrophysical Journal, vol. 597, no. 1, p. 57, 2003.

https://www.pnas.org/content/early/2020/05/28/1912789117
https://www.pnas.org/content/early/2020/05/28/1912789117
https://doi.org/10.1371/journal.pcbi.1002803
http://doi.wiley.com/10.1111/j.1541-0420.2010.01410.x
http://doi.wiley.com/10.1111/j.1541-0420.2010.01410.x
http://arxiv.org/abs/2006.05676
http://arxiv.org/abs/2002.11670
http://dx.doi.org/10.3847/1538-4365/ab5b9d

	Introduction
	Background and Motivation
	Stochastic Epidemiology Model
	Approximate Bayesian Computation (ABC)
	Hardware Acceleration Platforms
	Tesla V100 GPU
	Intelligence Processing Unit (IPU)

	Design Methodology
	Parallelizing ABC inference for Epidemiology Model
	Hardware Optimizations for Accelerating ABC Inference

	Results and Discussion
	Performance
	Simulation and Correctness of Computations
	Scalability Analysis

	Conclusion and Future Work
	References

