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The unique characteristics of multimedia/embedded applications dictate media-sensitive architec-
tural and compiler approaches to reduce the power consumption of the data cache. Our goal is ex-
ploring energy savings for embedded/multimedia workloads without sacrificing performance. Here,
we present two complementary media-sensitive energy-saving techniques that leverage static in-
formation. While our first technique is applicable to existing architectures, in our second technique
we adopt a more radical approach and propose a new tagless caching architecture by reevaluating
the architecture–compiler interface.

Our experiments show that substantial energy savings are possible in the data cache. Across a
wide range of cache and architectural configurations, we obtain up to 77% energy savings, while
the performance varies from 14% improvement to 4% degradation depending on the application.

Categories and Subject Descriptors: B.3.2 [Memory Structures]: Design Styles—Cache memories;
C.3 [Special-Purpose and Application-Based Systems]: Real-Time and Embedded Systems
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1. INTRODUCTION

The recently introduced low-power media/embedded processors share a com-
mon trait; the caches consume a significant portion of the power consumed:
42% and 23% of the total processor power in StrongARM 110 [Montenaro et al.
1996] and Power PC [Bechade et al. 1994], respectively (see Figure 1). There-
fore, saving cache energy will have a considerable impact on the overall energy
consumption.

In an earlier paper about the FlexCache project [Moritz et al. 2001], we
described our vision of a multipartitioned cache where memory accesses are
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Fig. 1. Power consumption for embedded/media processors. (a) StrongARM; (b) PowerPC.

separated based on their static predictability and memory footprint, and man-
aged with various compiler-controlled techniques supported by instruction set
architecture extensions, or with traditional hardware control. Here we apply
our vision to data cache energy savings. To implement this goal, we blur the
boundary between the architecture and compiler layers.

In particular, our contributions are

—A compiler-controlled data remapping scheme directs scalar accesses to a
small scratchpad SRAM area. This scheme can be utilized in existing me-
dia processors and results in up to 38.2% average energy savings without
sacrificing performance.

—Hotlines: An embedded/media-sensitive compiler-enabled caching frame-
work that eliminates cache tags. Hotlines is up to 50% more energy efficient
than a regular cache.

We adopt an incremental approach. In the first phase, we employ data par-
titioning for scalars. This approach requires few, if any, modifications to cur-
rent architectures and compilers. We examined the memory footprint of scalars
in embedded/multimedia applications and found them to be extremely small
Unsal et al. [2001]. We also established that a significant percentage of mem-
ory accesses in these applications are scalar accesses. These characteristics
motivated us to direct the scalar accesses to a small scratchpad SRAM area.
Although accessed very frequently, this small SRAM is more energy efficient
than when scalar data are mapped into the large L1 cache.

In the second phase, we aim for greater energy savings through graceful but
powerful architectural/compiler paradigm redefinitions. We design and intro-
duce a compiler-controlled tagless caching framework, hotlines, which achieves
significant energy savings. Our hotlines framework saves energy without
substantial performance loss, in some cases even beating traditional hardware-
based cache performance. The compiler-directed cache is a flexible, compiler-
generated data cache that replaces the tag-memory and cache controller
hardware with a compiler-managed tag-like data structure. Being software
based, the cache is highly reconfigurable—such parameters as line-size and as-
sociativity can be tailored to each application to provide maximum performance.
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The virtual address to SRAM address translation, conventionally performed
by the cache controller, must now be done by the software. Typical steps would
involve extraction of tag, set, and line-offset bits from the address, comparing
the tags (the tag-structure is itself stored in the SRAM), and so on. This will take
several cycles compared to just one for the hardware cache. Fortunately, there
is considerable reuse of such address translation and the compiler can be modi-
fied to take advantage of it. Most of the memory accesses for any application in
general, and media applications in particular, are generated by array accesses
which have a high degree of locality. Consider an array A[i] being accessed in
a loop. If A has 8-byte-wide elements and the cache line is 256 bytes wide, we
have 32 elements per cache-line. Now if A[i] is being accessed sequentially, we
will have one new address translation followed by 31 reuses of this translation.
This is where the hotline technique becomes beneficial. We propose an 8-entry
hotline register file that caches eight virtual address to SRAM address transla-
tions. The hotline compiler pass assigns each nonscalar (arrays, structures, and
so on) a unique hotline register. Every time a nonscalar is accessed; the emit-
ted virtual address is compared with virtual address contained in the hotline
register associated with this nonscalar. If it matches, we have a hit (address
translation reuse). On a miss, a software exception handler is invoked to do the
translation and update the hotline register with the new translation. Since this
reuse scheme is generated by the compiler, we call it static prediction. For the
applications tested, the static prediction rate is found to average around 80%.

This paper is organized as follows. In Section 2 we review related work and re-
iterate our motivation. In Section 3 we present the architectural framework for
our incremental techniques. We address compiler issues in Section 4. Section 5
explains our experimental setup. We divide our results section into two: in
Section 6.1 we analyze the energy efficiency of our scratchpad technique in iso-
lation. We then embed this technique in our proposed Cool-Cache framework
together with our hotlines approach and study the performance and energy
savings of the complete Cool-Cache framework in Section 6.2. We conclude in
Section 7.

2. PREVIOUS WORK

Previous cache-partitioning research focused more on performance issues
rather than on energy. Providing architectural support to improve memory be-
havior includes split caches that were discussed in Milutinovich et al. [1996].
Albonesi [2000] proposed selective cache ways, a vertical cache-partitioning
scheme. Benini et al. [2000] discuss an optimal SRAM partitioning scheme for
an embedded system-on-a-chip. Panda et al. [1997] propose use of a scratch-
pad memory in embedded processor applications. Kin et al. [1997] study
a small L0 cache that saves energy while reducing performance by 21%.
Lee and Tyson [2000] use the mediabench benchmarks and have a coarse-
granularity partitioning scheme: they opt for dividing the cache along OS re-
gions for energy reduction. Chiou et al. [2000] employ a software-controlled
cache and use a cache-way-based partitioning scheme. A recent paper by Huang
et al. [2001] also presents a way-prediction scheme; their cache partitioning
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includes a specialized stack cache, and compiler implementation concerns are
addressed.

Combined compiler/architectural efforts toward increasing cache locality
[Memik et al. 1999] have exclusively focused on arrays. A recent memory be-
havior study for multimedia applications has also primarily targeted array
structures [Kulkarni et al. 2000]. Another recent paper by Delaluz et al. [2000]
discusses energy-directed compiler optimizations for array data structures on
partitioned memory architectures; they use the SUIF compiler framework
for their analysis. One previous work that also targeted multimedia systems
[Ranganathan et al. 2000] has considered dynamically dividing caches into mul-
tiple partitions, using the Mediabench benchmark in the performance analy-
sis, with comments on compiler-controlled memory. Cooper and Harvey [1998]
look at compiler-controlled memory. Their analysis includes spill memory re-
quirements for some Spec ’89 and Spec ’95 applications. Witchel et al. [2001]
propose a direct-addressed cache that eliminates some cache tag accesses and
thereby saves energy. In their study of instruction fetch prediction, Calder and
Grunwald [1995] introduce a tagless memory buffer for next cache line and set
prediction. Abraham and Mahlke [1999] evaluate memory hierarchies for em-
bedded systems from a performance point of view.

Our previous work [Moritz et al. 1999, 2001; Unsal et al. 2000a, 2000b, 2001a,
2001b, 2002] and the above research provide the framework and the motiva-
tion for this study. Our unique contribution is the design of an energy-efficient
compiler-controlled dynamically configurable tagless caching framework. This
work pushes caching further up to the compiler layer.

3. ARCHITECTURAL FRAMEWORK

3.1 Scalar Data Remapping

Our first energy-saving technique remaps every scalar memory access into a
scratchpad memory area. It can be used in existing architectures, and no archi-
tectural modifications are necessary since many media/embedded processors
have a scratchpad. For example, any entry in the cache in Fujitsu Sparclite
can be locked, in effect making the entry an element in the SRAM buffer. Part
of the cache can be reorganized as a SRAM scratchpad area in the Samsung
ARM7 and Hitachi SH2. The recently introduced Intel StrongARM SA-1110
[Intel 2000] has a 512 byte minicache for frequently used data. In our previ-
ous study of the Mediabench benchmarks [Unsal et al. 2001b], we found that
a slightly larger scratchpad SRAM size of 1024 bytes is enough to map all
the scalars. A scratchpad SRAM guarantees single-cycle access time to scalars
since there are no cache misses. Thus, we guarantee at least the same level of
performance from our scheme as compared to a regular nonpartitioned architec-
ture. In fact, since we decrease the cache interference, we get better data cache
performance by separating scalar accesses from array accesses [Unsal et al.
2001b]. If the embedded/multimedia processor is not equipped with any kind of
scratchpad mechanism, then the ISA can be augmented with special load/store
instructions that would channel the scalar data to a separate cache area.
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The implementation is simple: encode a single additional bit in the instruction,
thus “marking” the load/store to be diverted. This is similar to the approach
taken by Calder and Grunwald [1994] for marking branch instructions.

3.2 Cool-Cache Architecture

Our caching architecture is completely compiler managed, and is therefore able
to leverage static information that is lost in traditional hardware caches.

The Cool-Cache architecture combines four cache control techniques:
(1) fully static, (2) statically speculative, (3) hardware-supported dynamic, and
(4) software-supported dynamic.

The fully static cache management is based on a disambiguation between the
scalar and nonscalar accesses. As described in Unsal et al. [2001b], although
the scalars typically have a very small footprint, they are frequently accessed,
and have considerable interference with nonscalar accesses. The Cool-Cache
architecture, by statically diverting the scalar and nonscalar accesses to the
scratchpad memory and the SRAM, respectively, not only eliminates this in-
terference but also saves power by only accessing a small scratchpad memory
instead of a much larger data-array. Although our current implementation is
based on statically mapping scalars, a generalization of this idea is to map
frequently accessed memory references that have a small footprint into the
scratchpad area.

The second technique in the Cool-Cache architecture is based on a compile-
time speculative approach to eliminate tag-lookup for nonscalar memory ac-
cesses. In addition, some of the cache logic found in associative caches can also
be eliminated. The idea is that if a large percentage of cache accesses can be
predicted statically, then we can eliminate the tag-array and the cache logic
found in associative caches and thus reduce power consumption.

The scalars are directly mapped to the scratchpad memory; no runtime over-
head is required. However, if managed explicitly in the compiler, the nonscalars
require virtual-to-SRAM address mappings or translations at runtime. This
mapping is basically a translation of virtual cache line addresses into SRAM
lines, based on the line sizes assumed in the compiler. Note that the partitioning
of the SRAM into lines is only logical: the SRAM is mainly accessed at the word
level, except during fills associated with cache misses. This translation can be
done by inserting a sequence of compiler-generated instructions, at the expense
of some software overhead. But as discussed in Moritz et al. [1999], for many
applications, there is substantial reuse of these address mappings. Our findings
for multimedia applications also confirm this. The compiler can speculatively
register–promote the most recent translations into a small new register area:
we call it the hotline register file. With special memory instructions, similar to
those proposed in the FlexCache architecture [Moritz et al. 2001], the runtime
overhead of speculation checking can be completely eliminated.

The third technique helps to avoid paying the high penalty of a software-
based recovery mechanism, (i.e., during a statically mispredicted access) we
use a small 16-entry fully associative cache TLB to cache address mappings for
memory accesses that are mispredicted. We found that a 16-entry cache TLB
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Fig. 2. The Cool-Cache architecture.

is enough to catch most of the address translations that are not correctly pre-
dicted statically. This approach is similar to caching frequently used page table
entries in the TLB and to minimize address translation overhead in virtual
memory systems. Further, because the hotline check can be performed at an
early pipeline stage, and is very quick, we can access the cache TLB on hotline
mispredictions without any performance penalty.

The fourth technique used in Cool-Cache is basically a fully reconfigurable
software cache. This technique is more of a backup solution, and it can imple-
ment a highly associative mapping. Our implementation is based on a four-way
associative cache with random replacement. The mapping table between virtual
cache lines and physical SRAM lines is implemented similarly to an inverted
page table. We have assumed a 25-cycle overhead associated with this software
backup mechanism (in addition to any further cache miss latencies). Our re-
sults show that the combined static and cache TLB techniques capture more
than 99% of the memory accesses for most of the multimedia applications.

Figure 2 provides an overview of the Cool-Cache architecture. All the memory
accesses are diverted by the compiler to either the scratchpad or the hotline
architecture. The scratchpad access mechanism consumes very little power due
to its small size (we assume a 1 KB structure in our experiments) compared to
the regular SRAM data array.
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The nonscalar memory instructions carry a hotline index. This identifies the
hotline register, predicted by the compiler to contain the address translation for
the current memory access. Using this index, the corresponding hotline register
is read from the hotline register file.

The hotline register contains the virtual cache line address to SRAM line
address mapping. If the memory reference has the same virtual address as that
contained in the hotline register, we have a correct static prediction. Upon a
correct static prediction, the SRAM can be accessed through the SRAM address
contained in the hotline register that is combined with the offset part of the
address, and the memory access is satisfied. If we have a static misprediction,
though, the cache TLB is checked for the translation information.

If the cache TLB hits, the hotline register is updated with the new transla-
tion, and the memory access is satisfied. A cache TLB miss invokes a compiler-
generated software handler. This handler checks the tag-directory (which is
itself stored in a nonmapped portion of the SRAM) to check if it is a cache hit
or miss. On a miss, a line is selected for replacement and the required line is
brought into its place, the replacement being handled by software. The cache
TLB and the hotline register are updated with the new translation, and the
memory access is satisfied by accessing the SRAM.

Because the software handler is accessed so seldom, its overhead has mini-
mal effect on the overall performance. The Cool-Cache can, in fact, even surpass
a regular hardware cache in terms of performance. For one thing, the interfer-
ence between scalar and nonscalar accesses has been eliminated, resulting in
higher hit-rate and better cache utilization. Second, a high associativity is emu-
lated, without the disadvantage of the added access latency in regular associa-
tive caches. Since the SRAM access mechanism is much less complicated than a
regular tagged hardware cache, there is a possibility of reduction in cycle time.
As shown in Wilton and Jouppi [1996], the tag-access is on the critical path and
can add as much as 30% to the access time of associative caches. Consequently,
many designs either place the tag-access on a separate pipeline stage or try to
balance the latency between the data-array path and the tag-path [Wilton and
Jouppi 1996]. Finally, an optimal line size can be chosen on a per-application
basis. From a power perspective, the Cool-Cache has substantial gains com-
pared to a hardware cache for two reasons. First, there are no tag-lookups on
scalar accesses and correctly predicted nonscalar accesses. Second, the SRAM
is used as a simple addressable memory—the complicated access mechanisms
of a regular cache consume more power.

Our results (in Section 6.2.1) show that, except for one application, the hot-
line prediction system performs better for higher line sizes. Specifically, a line-
size of 1024 bytes gives the best result, among the tested line-sizes, for most
of the applications. Such a big line-size can be an issue, however, when inter-
facing with higher level caches or the DRAM. Filling a 1K-wide cache line on
a miss can take a large number of cycles. The problem of supporting different
line-sizes, and especially the larger ones, can be mitigated to quite an extent
by having an interleaved structure of DRAM banks and a slightly wider bus
between the SRAM and the external memory. See Delaluz et al. [2000] for a
discussion of energy-conscious interleaved memories.
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Fig. 3. Cool-Cache compiler stages.

4. COOL-CACHE COMPILER

The overall complexity of the Cool-Cache compiler is not much greater than that
of a regular compiler. Figure 3 shows a high-level picture of the stages involved.
The sources are first converted to the intermediate format and high-level op-
timizations are performed. This, the most time-consuming task, is common to
both the Cool-Cache and a regular compiler. Following that is the alias analysis
stage. It enables the hotline analysis to more economically assign hotlines to
references. Without the alias analysis, we would liberally assign each memory
reference a new hotline number. This will have a degrading effect only if the
number of references within inner loop bodies is more than the number of hot-
lines, resulting in the same hotlines being assigned to references that could be
spatially far apart. This would cause interference and result in lower predic-
tion rates. For many applications, this does not happen, and we can omit the
alias analysis stage altogether without any noticeable effect on the prediction
rates.

Next we have the hotline analysis stage: this is a greatly simplified version of
the algorithm used in Moritz et al. [2001], because alias analysis information is
disregarded. The pseudocode of the algorithm is shown in Figure 4. The scalar
footprint analysis [Unsal et al. 2001b] then calculates the footprint require-
ments of scalars. Having done with all the higher-level stages, code generation
is performed next. This stage is modified from a regular compiler to generate
the modified memory instructions: these contain the scratchpad/hotline anno-
tations. In terms of the final binary output, the only changes we have are the
additional bits in memory instructions that carry the annotations. This means
that the binary can even be run on a regular hardware cache architecture that
disregards the annotations. The code is exactly the same size, differing only in
addresses.

5. METHODOLOGY

Since our target application is multimedia, we use Mediabench [Lee et al. 1997]
in our experiments. See Table I for a short description of the benchmarks in-
cluded in our analysis.

Figure 5 shows a block diagram of our framework. We needed a detailed com-
piler framework that would give us sufficient feedback, is easy to understand,
and allows us to change the source code for our purposes. With this in mind,
we chose the SUIF/Machsuif suite as our compiler framework. SUIF performs
high-level passes, while Machsuif makes machine-specific optimizations. We
have modified SUIF/Machsuif passes for our memory remapping schemes and
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Fig. 4. The hotline algorithm.

Table I. Applicable Mediabench Benchmarks

Benchmark Description
ADPCM Adaptive differential pulse code modification audio coding
EPIC Image compression coder based on wavelet decomposition
G721 Voice compression coder based on G.711, G.721, and G.723 standards
GSM Rate speech transcoding coder based on the European GSM standard
JPEG A lossy image compression decoder
MESA Open GL graphics clone: using Mipmap quadrilateral texture mapping
MPEG Lossy motion video compression decoder
PEGWIT Public key encryption coder generates a public key from a private key
RASTA Speech recognition application

Fig. 5. Experimental setup block diagram.
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Table II. Cool-Cache Specific Hardware Power
Consumption. Note That L1 Data Memory is Tagless

Hardware Block Name Modeled as Power (W)
64 bit wide L1 memory SRAM 6.86
256 bit wide L1 memory SRAM 5.58
1 Kb scratchpad memory SRAM 0.68
8 hotline registers Register file 0.16
16 entry Cache TLB CAM 0.34

used the SUIF annotation mechanism to propagate them. First, all the source
files are converted into SUIF format and merged into one SUIF file. Then,
the hotline pass (which is a SUIF pass) is run on this merged file to pro-
duce a modified SUIF file. The hotline pass analyzes the file and annotates
the nonscalar accesses with hotline numbers. Next, we run this SUIF file
through the Machsuif passes. The Machsuif Raga pass annotates all the scalar
accesses as such. The resulting assembler code targets the Alpha proces-
sor and contains two kinds of annotations that are of interest to us: hot-
line and scalar annotations. We amended the assembler code by inserting
NOP-like instructions around the annotated memory operations, thus marking
them.

We then used the Wattch [Brooks et al. 2000] tool suite to run the binaries
and collect the energy results. Wattch is based on the Simplescalar [Burger and
Austin 1997] framework. The simulators have been modified to recognize the
annotations in the marked code, do hotline register checks, cache TLB checks,
and so on. Such statistics as the number and energy of scalar and hotline ac-
cesses, correct static predictions, cache TLB hits, scratchpad cache, and Cool-
Cache tagless SRAM accesses are output by the simulators.

Our baseline machine model is an ARM-like single-issue in-order processor.
Lee and Tyson [2000] use an identical configuration in their power dissipation
analysis of region-based caches for embedded processors. We modified Wattch
to calculate the energy consumption of the additional hardware blocks required
in Cool-Cache. The added blocks and their power consumption as modeled by
Wattch are shown in Table II. Wattch uses an analytical cache energy dissipa-
tion model, similar to Kamble and Ghose [1997]. The added blocks are modeled
as a SRAM (for the tagless cache), a register file (for the hotline registers), and
a CAM (for the cache TLB). We use the activity-sensitive conditional clocking
power model in Wattch, that is, the cache consumes power only when it is ac-
cessed. This is the model that gives the most conservative energy savings. Note
that other Wattch power models reported even higher savings for our frame-
work. An example is the cc3 model that includes leakage power; by eliminating
the separate tag-structure and logic (tags are seamlessly stored along with
data in the SRAM), we save significantly on the static/dynamic power associ-
ated with the tags. To determine the baseline cache size, we did a survey of data
cache sizes of current multimedia processors. As Table III indicates, the trend
is towards larger caches. Therefore, we have selected a 64KB 2-way cache as
our baseline. We also examine 32K and 128K caches in our sensitivity analysis.
See Table IV for our baseline configuration.
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Table III. Data Cache Sizes for Typical Media
Processors

Processor L1 Size L2 Size
ARM ARM10 32K None
Transmeta Crusoe TM3200 32K None
Transmeta Crusoe TM5400 64K 256K
Intel StrongARM SA-110 16K None
Equator Map-CA 32K None

Table IV. Baseline Parameters

Processor speed 1 GHz
Process parameters 0.35 µm, 2.5 V
Issue In-order single-issue
L1 D-cache 64 Kb, 2-way associative
L1 I-cache 32 Kb, 2-way associative
Scratchpad 1 Kb
On-chip L2 cache None
L1 D-cache hit time 2 cycles
Scratchpad hit time 1 cycle
L2 cache hit time 20 cycles
Main memory hit time 100 cycles

5.1 Scalar Data Remapping

Our main focus is Machsuif ’s register allocator pass, Raga. Raga uses a graph-
coloring heuristic to assign registers to temporaries. We have made modifica-
tions to Raga to annotate scalar memory accesses. The scalar memory accesses
consist of spills and register promotion-related memory accesses. Obviously,
this could only be done if the memory footprint of the scalars is smaller than
the scratchpad area. We presented the compiler algorithm that extracts the
footprint size in Unsal et al. [2001b].

6. RESULTS

6.1 Scratchpad Energy Savings

Unless otherwise stated, all the results in this section are for a scratchpad
of size 1024 bytes and a 64 KB 2-way associative baseline cache. We ran the
benchmarks using the modified Wattch/Simplescalar and collected the data
cache energy results. Figure 6 shows the percentage energy savings for our
32 general-purpose register media processor model. Compared to the baseline
monolithic cache, we save 10.7% energy on average by using our scheme.

Many media processors such as the ARM have a smaller number of registers,
usually 16. Therefore, we have repeated our energy analysis for a 16-register
version of our media processor. For 16 registers we have significantly more
scalar memory accesses due to register pressure. The results are also shown in
Figure 6. Our technique saves in this case an average of 38.2% of energy.

In fact, we show that we can be just as energy efficient with a 16-register
media processor with a scratchpad SRAM as a 32-register processor with no
scratchpad, see Figure 7. Actually, the overall energy savings are even greater
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Fig. 6. Scratchpad energy savings.

Fig. 7. 16-register architecture with scratchpad can be more energy efficient than 32-register
architecture without scratchpad.

since we just concentrate on the data cache energy consumption: a 16-register
file consumes substantially less power than a 32-register file.

Mediabench supplies two input sets: the second input set is larger and there-
fore exercises the caches more. We used this alternative input set and ran the
applications for a study of the sensitivity of the energy savings to the input data
set. Although the data cache energy consumption of the second set is greater,
the results in Figure 8(a) suggest that the energy savings are independent of
the input sets included in the Mediabench.

Next we explore the sensitivity of the energy savings to the cache associa-
tivity and size. We compared our baseline cache with a 64K 4-way cache. The
results in Figure 8(b) show that the savings are fairly independent of cache asso-
ciativity. We have also looked at the impact of cache size. Figure 9(a) shows the
energy consumption in millijoules for three cache sizes. Figure 9(b) shows the
corresponding energy savings for these cache sizes. Although the energy con-
sumption differs according to cache size, the energy savings due to our method
remain almost independent of the size.
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Fig. 8. Energy savings sensitivity analysis. (a) Sensitivity to input; (b) sensitivity to cache
associativity.

6.2 Cool-Cache Performance and Energy Savings

6.2.1 Prediction Rates. The prediction rates of the hotlines scheme are
shown in Figure 10. The sensitivity of the prediction rates to both cache line-
size and cache size are also shown. Figure 10(a) shows the hit rate variation
as a function of cache size where the line-size has been fixed at 256 bytes. The
three bars for each application, starting from the left, are for cache sizes of
32 Kb, 64 Kb, and 128 Kb, respectively. Figure 10(b) has the cache size fixed at
32 Kb with line sizes of 1024b, 256b, and 64b.

From the second graph in Figure 10(b), it can be concluded that the prediction
rates (both static and dynamic) increase as the line-size increases. There are two
reasons for this. First, since the media applications exhibit high-spatial locality,
even a line-size as large as 1 Kb does not degrade cache performance (except
for pegwit, where the cache-miss rate is seen to drop as line-size decreases).
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Fig. 9. Energy consumption and savings for different cache sizes. (a) Energy consumption;
(b) energy savings.

Second, as the line-size increases, the memory area covered by each hotline
becomes larger and there is a higher chance of correct static prediction.

Figure 10(a) shows that the static and dynamic prediction rates are almost
independent of cache size. The prediction rate depends on the rate of reuse of
cache lines. A high prediction rate implies that 24 cache lines (8 of which are
in the hotline register file and 16 in the cache TLB) are being heavily reused.
As long as these 24 lines are not replaced from the cache during this period of
heavy reuse, the prediction rate will stay the same, regardless of the cache size.
For a 256-byte line, this translates to 6 KB. Therefore, for cache sizes above, say
8 Kb, the prediction rate will be fairly constant. Figure 11 shows the sensitivity
to the input data size, where the cache and line sizes have been fixed at 32 Kb
and 1024 bytes, respectively. The first bar corresponds to a small input data.
The second one is for a much bigger data set. As can be seen, the rates are fairly
independent of the data size.
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Fig. 10. Hit rate for different configurations. (a) 256 byte line; (b) 32K cache.

6.2.2 Performance. We now study the impact of the Cool-Cache on per-
formance. Figure 12 shows the memory performance, that is, the cycles spent
on memory instructions. The values have been normalized with 1 represent-
ing the hardware cache performance. There are three stacked bars for each
application—for a 32K Cool-Cache with line-sizes of 1024b, 256b, and 64b,
respectively. Each bar has several components. Starting from the bottom,
they are time spent on scratchpad accesses, correctly predicted hotline ac-
cesses, hotline mispredictions that hit the cache TLB, TLB mispredictions
that hit the cache, and cache misses. Since the Cool-Cache is reconfigurable,
the line that gives the best performance can be chosen. The worst per-
former is pegwit, for which the memory instructions take double the time
taken on a hardware cache. Note, though, that these performance numbers
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Fig. 11. Hit rate sensitivity to benchmark input.

Fig. 12. Cool-Cache memory performance.

are based on cycle counts and not time: the simpler access mechanism in
Cool-Cache as compared to a hardware cache can lead to a shorter cycle
time.

Figure 13 shows the overall performance values (again normalized to
a 0–1 scale) for the same cache size and line-size parameters. Since the
memory instructions are a fraction of the total executed instructions, the
overall performance boost/degradation is less than the memory performance
boost/degradation. Note that for four of the benchmarks, we perform better
than a hardware cache. Two benchmarks have the same performance, and for
two benchmarks we have worse performance. However, the worst performance
degradation is 4%; while the best performance gain, for Epic, is 14%.

6.2.3 Energy Savings. We now evaluate the energy savings of our Cool-
Cache framework over traditional hardware caching. As in Section 6.1, this
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Fig. 13. Cool-Cache performance.

Fig. 14. Cool-Cache energy savings. (a) 8-byte and 32-byte wide SRAM Cool-Cache 16-register
CPU; (b) 8-byte and 32-byte wide SRAM Cool-Cache 32-register CPU.
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analysis is performed for two different media processor configurations: a
16-register and a 32-register CPU. Note that the actual energy savings from
Cool-Cache is even greater: unlike a traditional set associative hardware cache,
Cool-Cache does not need set selection multiplexers. We do not account for
the energy impact of eliminating this hardware block, since Wattch does not
model the power consumption of the set selection multiplexers. As explained in
Section 5, we do account for the energy consumption of additional Cool-Cache
hardware blocks.

We consider two Cool-Cache configurations, SRAMs with 8-byte and 32-
byte widths, and compare these against two traditional hardware caches, a
direct mapped and a 4-way set associative cache. The results in Figure 14
are for 64K caches, the Cool-Cache has a hotline size of 256 bytes. As seen in
the figure, Cool-Cache savings are higher for the 16-register configuration. The
32-byte-wide Cool-Cache achieves higher percentage energy savings than the
8-byte-wide Cool-Cache. Cool-Cache is substantially more energy efficient than
not only the direct-mapped traditional cache but also the 4-way set-associative
one. Note that the scratchpad-only energy savings are somewhat more sensi-
tive to the register file size (Figure 6), whereas substantial energy savings are
possible with the Cool-Cache even for an aggressively-sized register file, see
Figure 14(b). This is due to the efficiency of the statically speculative hotlines
component of Cool-Cache.

7. CONCLUSION

Our Cool-Cache framework achieves substantial energy savings for multimedia
applications without compromising performance. Our research covers the ar-
chitectural and compiler domains. We consider both scalars and nonscalars in
our techniques and direct scalars into an energy-efficient minibuffer. We also
propose and evaluate a new flexible compiler-controlled caching architecture
that eliminates cache tags. The ideas presented in this paper could be applied
for chipwide energy saving schemes as well. A natural extension of this work
would be using statically speculative compiler-architectural methods to drive
energy optimization at the fetch and issue stages.
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