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Abstract— Neuromorphic computing mimicking the 

functionalities of mammalian brain holds the promise for 

cognitive capabilities enabling new intelligent applications. 

However, research efforts so far mainly focused on using analog 

and digital CMOS technologies to emulate neural activities, and 

are yet to achieve expected benefits. They suffer from limited 

scalability, density overhead, interconnection bottleneck and 

power consumption related constraints. In this paper, we present 

a transformative approach for neuromorphic computing with 

Wave Interference Functions (WIF). This is a framework using 

emerging non-equilibrium wave phenomenon such as spin waves. 

WIF leverages inherent wave attributes for multi-dimensional, 

multi-valued data representation and communication, resulting 

in reduced connectivity requirements and efficient neural 

function implementations. It also yields a compact 

implementation of an artificial neuron. Moreover, since WIF 

computation and communication are in the spin domain, 

extremely low-power operation is possible. Our evaluations 

indicate up to 57x higher density, 775x lower power and 2x better 

performance when compared to an equivalent 8-bit 45nm CMOS 

neuron. Our scalability study using arithmetic circuits for higher 

bit-width neuron implementations indicate up-to 63x density, 

884x power and 3x performance benefits in comparison to a 32-

bit CMOS equivalent design at 45nm.  

Keywords—Neuromorphic Computing; Wave computation; 

Multi-valued computation; Spin waves; Wave interference 

functions. 

I. INTRODUCTION 

Brain-like computing has always attracted scientists and 
engineers in a quest for supporting intelligent applications. The 
new applications can revolutionize the Integrated Circuits (IC) 
industry and achieve far-reaching socio-economic impact. With 
the progress in nanoscale manufacturing, device, and circuit 
technologies the push for neuromorphic computing is 
reinvigorated.   

To-date, research on hardware implementation of 
neuromorphic architectures has been mostly focused on 
emulation of neural activities using either analog or digital 
CMOS technologies. However, none of these technologies are 
intrinsically suitable for neuromorphic implementations. 
Analog-CMOS based implementations use analog data 
representation and analog components to emulate the 
biophysics of neurons; these designs are fully customized, and 
suffer from scalability limitations, density and connectivity 
bottleneck issues ‎[1], On the other hand, digital CMOS 
implementations use Boolean data representation and digital 
transistors to emulate the behavior of a neuron at higher level 

of abstraction; this results in high power consumption and area 
overheads ‎[1].   

In this paper, we present Wave Interference Functions 
(WIF) framework ‎[2], and show a new transformative 
approach‎using‎WIF‎towards‎neuromorphic‎computing.‎WIF’s‎
core components, multi-valued data representation, 
communication, and computation allow efficient mapping of a 
biological‎ neuron’s‎ functionalities with ultra-low power 
operation. WIF uses nanoscale physical components: spin 
wave bus and magneto-electric (ME) cells.  Information is 
encoded‎in‎a‎combination‎of‎spin‎wave’s‎attributes‎– amplitude 
and phase. Information processing is achieved through wave 
superposition interactions and wave propagation; ME cells are 
used for wave generation, detection, amplification and non-
volatile storage. The information encoding in wave attributes 
and wave interference allows intrinsic multi-valued data 
representation,‎communication‎and‎computation.‎WIF’s‎multi-
valued logic constructs for functionality mapping in 
combination with these intrinsic physical capabilities enable 
compact logic/functionality implementation with minimum 
area footprint and reduced connectivity. Moreover, since 
neuron implementation in WIF is done in a generic neuron 
architecture using logic, arithmetic, input/output functional 
units and storage, the design is scalable to higher bit-widths. 
Furthermore, the power consumption is extremely low due to 
spin-domain based signal propagation and computation. 

This paper presents foundational work towards 
neuromorphic computing using WIF. Key contributions of this 
paper are as follows: 

 Extensive‎ detail‎ of‎ WIF’s‎ core aspects, data 
representation, communication and computation. 
Mathematical formulation of wave interactions. 

 Introduction of new multi-valued logic constructs, 
arithmetic units, input/output functions and storage 
concepts necessary for neuron implementations in WIF. 

 Emulation of neuron behavior in WIF targeting scalable 
designs.  

 Evaluation and benchmarking of WIF neuron 
implementation with respect to equivalent digital 
CMOS based implementation in 45nm technology.  

The paper is organized as follows: Section II presents core 
fabric aspects, data representation, and details mathematical 
formulation of wave interactions. Section III presents multi-
valued logic constructs, arithmetic unit, input/output functional 
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units, and non-volatile storage. Section IV details neuron 
implementation in WIF. Section V shows evaluation and 
benchmarking results. Finally, Section VI draws conclusions. 

II. WAVE INTERFERENCE FUNCTIONS 

A. Physical Components 

Primary physical components in Wave Interference 
Functions (WIF) framework ‎[2] are spin wave bus and ME 
cell. These components are used to operate on spin wave. Spin 
waves ‎[4]‎[12]‎[14] are the collective oscillations of electrons 
spins in an ordered spin lattice around the direction of 
magnetization in ferromagnetic materials.  

Spin Wave Buses (SWB) are ferromagnetic waveguides 
that facilitate spin wave propagation and superposition (Fig. 
1a). SWB is used in between computational junctions for 
information transmission from one physical location to 
another. Using SWB, spin waves can be propagated to large 
distances at room temperature (from tens of micrometers in 
permalloy films ‎[6] to millimeters in yttrium iron garnet 
films ‎[7]). SWB also facilitates spin wave superposition. Spin 
waves interfering at a junction in SWB result in change in 
magnetization at that point. The magnitude of this local 
magnetization change is enhanced when the waves are in 
phase, and is diminished to a minimum when they interfere 
destructively (if they are out of phase with respect to each 
other).  

The ME cell is a multiferroic heterostructure consisting of a 
magnetic element with at least two stable states for 
magnetization. It performs several functions – (i) generates and 
detects spin waves by converting electric signals into magnetic 
domain and vice versa, (ii) amplifies spin waves for logic, and 
for signal restoration in spin wave bus, and (iii) stores encoded 
information in the state of its magnetization.  

When a bias voltage is applied on the top metal electrode 
(Fig. 1a), a stress generated in the piezoelectric layer causes 
rotation of the easy axis in the piezomagnetic material through 
strain-induced anisotropy with two preferred directions (along 
or opposite to the new easy axis). Propagating spin waves can 
then control magnetization direction of the cell. In the presence 
of bias field, when the easy axis rotation changes, it was shown 
that‎ the‎ incoming‎ spin‎ wave‎ with‎ phase‎ π‎ results‎ in‎
magnetization signal along the positive direction of new easy 
axis, whereas spin wave with phase 0 results in magnetization 
signal along the negative direction ‎[10]. 

 Spin wave generation is through applying an alternating 
voltage at the top metal contact, which results in oscillating 
strain in the piezoelectric layer that creates magnetoelastic spin 
wave excitation ‎[16]. Detection of spin waves is through the 
reverse process from magnetic to electric domain ‎[17].  

Similar principle can be applied for spin wave 
amplification. By applying alternating voltage (required for 90 
degree rotation) at a frequency equal to the incoming spin 
wave frequency, the rotated magnetization component can be 
amplified to the saturation value of magnetization. The phase 
of the incoming spin wave determines the direction of rotation 
(along or opposite to rotated direction) and hence preserves the 
phase in the output wave‎[18].  

ME cells exhibit nonvolatility, requiring no continuously 
applied voltage to keep the magnetization in the reoriented 
state ‎[15]‎[3]. Nonvolatility properties (i.e., endurance, 
retention) vary based on material choices, dimensions and 
integration aspects, and are still under active research. 
According to ‎[15],‎ ME‎ cell’s‎ retention‎ and‎ endurance‎
properties‎can‎be‎as‎high‎as‎STTRAM’s. Further details about 
ME cells can be found in ‎[3]‎[8]‎[12]‎[15]‎[18]‎[19].  

B. Multi-valued Data Representation with Waves 

Waves present several attributes to encode data such as 
phase, amplitude and frequency, thereby providing an 
opportunity to develop new schemes for multi-dimensional 
compressed data representation. The choice of using any one or 
a combination of the wave characteristics is driven by the 
capabilities of the physical components used to build the 
computational system. In this paper, we consider only two 
phases either‎0‎or‎π‎for data encoding, since the ME cells used 
for spin wave detection are designed to differentiate these 
phases.  

Here, we introduce the notations that will be used in 

subsequent sections for multi-valued logic design. A spin wave 

Table 1. Quaternary (Radix-4) Logic Encoding 

Logic Value 
Wave 

Representation 

Wave Attributes 

(Amplitude, Phase) 

0 𝐿̃0 = 3𝐴𝑒𝑖0 (3A, 0) 

1 𝐿̃1 = 𝐴𝑒𝑖0 (A, 0) 

2 𝐿̃2 = 𝐴𝑒𝑖𝜋 (A, π) 

3 𝐿̃3 = 3𝐴𝑒𝑖𝜋 (3A, π) 

 

 
Fig. 1. a) WIF Physical fabric components to operate on spin waves; and b) Illustration of quaternary data representation 

(radix-4) with waves, encoded in the combination of phase and amplitude.  
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is denoted as 𝑋̃; and is represented using polar co-ordinates to 
incorporate both its amplitude (a) and phase (φ) compactly as 
follows: 

𝑋̃ = 𝑎𝑒𝑖𝜑 = 𝑎(𝑐𝑜𝑠 𝜑 + 𝑖 𝑠𝑖𝑛 𝜑). (1)  

Thus, any wave can be interpreted as having amplitude a 
when the phase is 0, and –a when‎the‎phase‎is‎π‎at‎the‎point‎of‎
interference.‎When‎ a‎ phase‎ other‎ than‎ 0‎ and‎ π‎ is‎ employed,‎
either the real or imaginary component of the notation above 
will need to be used as required. 

To represent data in radix-r number system, we need r/2 
distinct amplitude values if r is even, and (r+1)/2 amplitude 
values if r is odd, in conjunction with aforementioned 2 phase 
values. For example, for binary data representation (radix-2) 
we need a single amplitude level A. The phase encodes binary 
data (1-bit) with logic 0 and logic 1, assigned to waves with 
initial‎ phase‎ 0‎ and‎ π‎ respectively.‎ ‎ For‎ quaternary‎ data 
representation (radix-4), we use two amplitude levels (A, 3A) in 
conjunction with two phase values (0,‎π)‎ to‎get‎ four different 
combinations. Each combination is assigned to a logic value 
(see Fig. 1b and Table 1). Alternative combinations for 
amplitude and phase may also be used. By contrast, 
conventional charge-based digital computational systems are 
capable of using only the presence/absence of charge for one-
dimensional binary information representation.  

C. Interference Function 

Wave interference is the fundamental operation in the WIF 
approach. Spin waves interfering at a given point exhibit linear 
superposition behavior ‎[6]‎[14]. Elementary spin wave circuit 
operation has been experimentally demonstrated at room 
temperature‎[4]. Here, the focus is on a new model of 
computation with waves departing from conventional Boolean 
and Majority approach. The Interference Function I of n input 

waves 𝑋̃0, 𝑋̃1, … , 𝑋̃𝑛−1 is defined as follows: 

𝐈(𝑋̃0, 𝑋̃1, … , 𝑋̃𝑛−1) =  𝑋̃0 + 𝑋̃1 + ⋯ + 𝑋̃𝑛−1 

 = 𝑎0𝑒𝑖𝜑0 + 𝑎1𝑒𝑖𝜑1 + ⋯ + 𝑎𝑛−1𝑒𝑖𝜑𝑛−1 . 
(2)  

The result of this Interference Function is a spin wave 𝑌̃, 
whose individual wave attributes are denoted as follows: 

𝑌̃ = 𝑎𝑦𝑒𝑖𝜑𝑦 = 𝐈(𝑋̃0, 𝑋̃1, … , 𝑋̃𝑛−1) 

where, 𝑎𝑦 = I𝐴(𝑋̃0, 𝑋̃1, … , 𝑋̃𝑛−1) 

            𝜑𝑦 = I𝜑(𝑋̃0, 𝑋̃1, … , 𝑋̃𝑛−1). 
(3)  

In general for n input waves, if the amplitude of any wave  

𝑋̃𝑗  is aj = wj.A, where wj represents a weight in multiples of 

unit-amplitude A, then the Interference Function result encodes 
the following information: 

I𝜑(𝑋̃0, 𝑋̃1, … , 𝑋̃𝑛−1) =  {
𝜋;   𝑖𝑓 ∑ 𝑤𝑗𝐴𝑒𝑖𝜋 >  ∑ 𝑤𝑘𝐴𝑒𝑖0

0;                                    𝑒𝑙𝑠𝑒
    

→ weighted-majority decision  

  I𝐴(𝑋̃0, 𝑋̃1, … , 𝑋̃𝑛−1) = |∑ 𝑤𝑘𝐴𝑒𝑖0| − |∑ 𝑤𝑗𝐴𝑒𝑖𝜋| .         

(4)  

The output phase encodes the weighted majority decision 
of all the input wave phases, and the amplitude represents the 
weighted difference of the number of input waves that are out-
of-phase with respect to each other. Thus the Interference 

Function encodes all the necessary information about the 
inputs in a compressed manner.  

Fig. 2 shows an example of multi-valued logic (Threshold 
function) implementation using Interference Functions in WIF. 
The multivalued threshold logic implementation in Fig. 2 takes 
two logical inputs (x,y) and outputs a constant value when one 
input is greater than the other. The threshold output (𝑥𝑦

𝑟−1) is 

logically defined as: 

𝑥𝑦
𝑟−1 = {

𝑟 − 1, when 𝑥 ≥ 𝑦  
0,           𝑒𝑙𝑠𝑒

, 𝑥, 𝑦 ϵ‎{0,‎1,…,‎r-1}. (5)  

For radix–r it is expressed in terms of Interference 
Function as: 

𝑋̃y
r−1 = I[(𝑟 − 1)I1

φ
(−𝑋̃, 𝑌̃, 𝐿̃𝑟/2)], (6)  

where (r-1) represents either r-1 copies of interference 

output at I1 or amplification (using ME cell); 𝑋̃, 𝑌̃are input 
waves corresponding to logical inputs x, y respectively; and 

𝐿̃𝑟/2  is a reference wave corresponding to logic level r/2.  

Interference Function I1 produces an output wave of positive 
phase when (𝑥 ≥ 𝑦) , and generates a negative phase 
otherwise. To obtain the correct output, here we use an 
amplification ME cell such that the output wave has a phase 
equal to the incoming wave, but the amplitude is always pulled 
up to the highest supported value. Fig. 2 shows the truth table 
for Threshold operation and physical implementation in WIF 
for quaternary logic (r = 4). 

III. WIF LOGIC CONSTRUCTS, ARITHMETIC, STORAGE AND 

INPUT/OUTPUT  UNITS FOR NEUROMORPHIC ARCHITECTURES 

In our previous work ‎[2], we have detailed multi-valued 
algebra, multi-valued operator implementations in WIF, and 
shown arithmetic functions using them. Quaternary logic 
encoding can be achieved by using weighted Interference 
Functions. Details of conversion between binary to quaternary 
values can be found in ‎‎[19]. Here, we introduce the multi-

 
Fig. 2. Truth table and physical implementation for Threshold 

Operator. ME cell labeled‎‘L2’‎and‎‘3A’‎generate and amplifies 

waves of logic 2 and amplitude 3A respectively.‎ ‎Here,‎λ‎ is‎ the‎

spin wavelength and n is an integer. Unless specified explicitly, 

all‎SWBs‎have‎lengths‎equal‎to‎an‎integral‎multiple‎of‎λ. 
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valued operators, arithmetic and functional units necessary for 
neuromorphic architectures in WIF. 

A. Multi-Valued Logic Constructs  

1) Truncat ed Difference Operator 

This operator outputs the difference between two inputs 
when a condition is satisfied. The notation is x Ξ‎ y, and the 
operation is defined as: 

𝑥 Ξ 𝑦 = {
𝑥 − 𝑦 , when 𝑥 > 𝑦  

0,           𝑒𝑙𝑠𝑒
, 

  𝑥, 𝑦 ϵ {0, 1, … , 𝑟 − 1}. 

(7)  

This can be expressed with Interference Function as 

𝑋̃ Ξ 𝑌̃ = 𝐈(𝑋̃, −𝑌̃, 𝐿̃0), (8)  

where, 𝑋̃, 𝑌̃ are input waves corresponding to logical inputs 

x, y respectively; and 𝐿̃0 is a reference wave corresponding to 
logic 0. The truth table and the physical implementation for 
Truncated Difference operator are shown in Fig. 3a for 
quaternary logic. The difference operation is performed at the 
junction of incoming waves. In order to achieve the correct 
output, the resultant wave amplitude after interference is 

always truncated to 3A if it is greater than 3A. This truncation 
may be achieved by either designing the spin wave bus and 
ME cells to accommodate this requirement or through external 
electrical circuits. The same assumption is considered for other 
multi-valued operators and circuit implementations as well. 

2) Min Operator 

The Min operator (x ∙ y) in multi-valued logic is analogous 
to the Boolean AND operator. It is defined as follows: 

𝑥 ∙ 𝑦 = {
𝑥,                     𝑥 < 𝑦  

𝑥 − (𝑥 − 𝑦),   𝑒𝑙𝑠𝑒
    

𝑥, 𝑦 ϵ {0, 1, … , 𝑟 − 1}. 

(9)  

The Truncated Difference operator can be used to realize 
the above output conditions as x ∙ y = x Ξ‎(x Ξ‎y). Notice that in 
equation (13), for the condition x ∙ y = y, the output is re-
expressed as x ∙ y = x – (x – y) to enable implementation with 
Truncated Difference operator. The functional representation in 
terms of Interference Function is: 

Min(𝑋̃, 𝑌̃) = 𝑋̃ Ξ (𝑋̃ Ξ 𝑌̃) = 𝐈[𝑋̃, −(𝑋̃ Ξ 𝑌̃), 𝐿̃0], (10)  

where 𝑋̃, 𝑌̃ are input waves  corresponding to logical inputs 

 
Fig. 3. Truth table and physical implementation for a) Truncated Difference Operator; b) Min Operator; and c) Max Operator. The 

intermediate‎ME‎cell‎labeled‎‘3A’‎generates‎a‎spin‎wave‎with‎phase‎equal‎to‎input‎phase‎and‎constant‎amplitude‎3A.‎Other‎intermediate 

ME‎cells‎labeled‎‘L0’‎and‎‘L3’‎generate‎waves‎corresponding to logic 0 and logic 3 respectively.‎Here,‎λ‎is‎the‎spin‎wavelength‎and‎n is an 

integer.‎Unless‎specified‎explicitly,‎all‎SWBs‎have‎lengths‎equal‎to‎an‎integral‎multiple‎of‎λ. 

 
Fig. 4. Truth table and physical implementation for cyclic operators, a) Carry Operator; b) Mod-Sum Operator. The 

intermediate‎ME‎cells‎labeled‎‘L0’‎and‎‘L2’‎generate‎waves‎corresponding‎to‎logic‎0‎and‎logic‎2‎respectively.‎Here,‎λ‎is‎the‎

spin wavelength and n is‎an‎integer.‎Unless‎specified‎explicitly,‎all‎SWBs‎have‎lengths‎equal‎to‎an‎integral‎multiple‎of‎λ. 
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x, y respectively; and 𝐿̃0 is a reference wave corresponding to 
logic 0. Fig. 3c shows the truth table and the WIF physical 
implementation of Min operator.  

3) Max Operator 

The max operator (x + y) in multi-valued logic is analogous 
to the Boolean OR, defined as follows: 

𝑥 + 𝑦 = {
𝑥, 𝑥 > 𝑦  

𝑥 + (𝑦 − 𝑥), 𝑒𝑙𝑠𝑒
        

  𝑥, 𝑦 ϵ {0, 1, … , 𝑟 − 1}. 

(11)  

The functional representation in terms of Interference 
Function is  

Max(𝑋̃, 𝑌̃) = 𝑋̃ + (𝑌̃ Ξ 𝑋̃) = 𝐈[𝑋̃, (𝑌̃ Ξ 𝑋̃), 𝐿̃𝑟−1], (12)  

where 𝐿̃𝑟−1  is a reference wave corresponding to logic 
value r-1. Fig. 3b shows the physical implementation. 

4) Cyclic Operator 

The cyclic operator is also known as mod-sum 
operator; it performs XOR-like operation in the multi-
valued domain. The mod-sum operator‎is‎defined‎as:‎ 

𝑥 ⊕ 𝑦 = (𝑥+𝑎𝑑𝑑𝑦) 𝑚𝑜𝑑 𝑟,  

𝑥, 𝑦 ϵ {0, 1, … , 𝑟 − 1}. 
(13)  

Here,‎ ‘+add’‎ represents‎ arithmetic‎ addition‎ of‎ logic‎ inputs.‎
To implement this function, we define a new operator called 
Carry operator‎(denoted‎by‎‘+carry’): 

𝑥 +carry 𝑦 = {
1, if 𝑥 +𝑎𝑑𝑑 𝑦 >  𝑟 − 1
0,                                      𝑒𝑙𝑠𝑒

           

𝑥, 𝑦 ϵ {0, 1, … , 𝑟 − 1}. 

(14)  

The Carry operator is implemented using Min operator as 
follows: 

𝑋̃+carry𝑌̃ = Min[𝐈(𝑋̃, 𝑌̃, 𝐿̃0), 𝐿̃1]. (15)  

The output of  I(𝑋̃, 𝑌̃, 𝐿̃0) represents (x +add y) – r–1, if x 

+add y > r–1; and 0 otherwise. Therefore, a non-zero output is 
obtained only when x +add y > r–1. The Min operation of this 

output with 𝐿̃1 provides the binary Carry output.  

The Cyclic operator is then implemented as: 

𝑋̃ ⊕ 𝑌̃ = 𝐈[𝐴̃, 𝐵̃, 𝐿̃0, (𝑋̃+add𝑌̃)r
r−1 , −(𝑋̃+carry𝑌̃)]. (16)  

Here, (𝑋̃+add𝑌̃)r
r−1  implements the Lower Threshold 

operation, whose output is r–1 if x +add y ≤‎ r–1, and 0 
otherwise.  Sample test vectors and outputs from Carry and 
Mod-sum operator are shown in truth tables in Fig. 4a and Fig. 
4b. 

5) Multiplexer 

A 2:1 Multiplexer function in WIF follows the following 
equation: 

𝑂𝑢𝑡 = 𝑀𝑎𝑥 (𝑀𝑖𝑛 (𝑥, 𝑠𝑒𝑙𝑒𝑐𝑡), 𝑀𝑖𝑛(𝑦, 𝑠𝑒𝑙𝑒𝑐𝑡̅̅ ̅̅ ̅̅ ̅̅  ) 

W here Out is the Max of two Min operations; the Min 

operations take as inputs (x, select) and (x, 𝑠𝑒𝑙𝑒𝑐𝑡̅̅ ̅̅ ̅̅ ̅̅ ). The 
multiplexer implementation in WIF is shown in Fig. 5. 
Similarly, a r:1 multiplexer can be implemented using r Min 
and r-1 Max operators. 

 
Fig. 5. Quaternary 2:1 Multiplexer implementation in WIF 

 
Fig. 6. Quaternary full adder implementation in WIF for: a) Carry function (Cout); and b) Sum function (Sout). 
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B. Quaternary Full Adder Design 

As mentioned earlier and in ‎[2]‎[5], the use of multi-valued 
operators for circuit design reduces complexity significantly 
and provides a framework for arbitrary logic/arithmetic 
implementation. The quaternary full adder circuit operates on 
two quaternary operands (A, B) and a binary carry-in (Cin).  It 
has two outputs representing the result of the addition – the 
quaternary least significant digit (Sout) and the binary carry-out 
(Cout). The same full adder design can be extended to 
implement high bit-width adders. The conditions for binary 
carry generation are: 

𝐶𝑜𝑢𝑡 = {
1, if 𝐴 +𝑎𝑑𝑑  𝐵 +𝑎𝑑𝑑  𝐶𝑖𝑛  ≥  𝑟
0,                                                  𝑒𝑙𝑠𝑒

           

𝐴, 𝐵 ϵ {0, 1, … , 𝑟 − 1} and 𝐶𝑖𝑛ϵ {0, 1}. 

(17)  

Here r = 4 for quaternary logic,‎ and‎ ‘+add’‎ represents‎
arithmetic addition of logic inputs. The above operation is 
realized using 3-input Carry operator as: 

𝐶̃𝑜𝑢𝑡 = 𝐴̃+carry𝐵̃+carry𝐶̃𝑖𝑛 = Min[𝐈(𝐴̃, 𝐵̃, 𝐶̃𝑖𝑛), 𝐿̃1], (18)  

where  𝐴̃, 𝐵̃, 𝐶̃𝑖𝑛  are input waves corresponding to logical 

inputs A, B, Cin respectively; 𝐶̃𝑜𝑢𝑡 is the output wave 

corresponding to output Cout; and 𝐿̃1 is a reference wave 
corresponding to logic 1. 

The quaternary full adder sum output (Sout) conditions are: 

{
 A +𝑎𝑑𝑑  B +𝑎𝑑𝑑 Cin − 𝑟 , if A +𝑎𝑑𝑑  B +𝑎𝑑𝑑 Cin  >  𝑟 − 1 

A +𝑎𝑑𝑑 B +𝑎𝑑𝑑 Cin,                                                  𝑒𝑙𝑠𝑒
        (19)  

Here A, B ϵ {0,1,2,3} and Cin ϵ {0, 1} for quaternary adder. 
This is expressed using 3-input Cyclic operator as follows:  

𝑆𝑜𝑢𝑡 = 𝐴̃ ⊕ 𝐵̃ ⊕ 𝐶̃𝑖𝑛 = 𝐈(𝐴̃, 𝐵̃, 𝐶̃𝑖𝑛 , 𝑋̃r
r−1 , −𝐶̃𝑜𝑢𝑡), 

whe re 𝑋̃ = (𝐴̃+𝑎𝑑𝑑  𝐵̃+𝑎𝑑𝑑𝐶̃𝑖𝑛).  
(20)  

The WIF implementation of equations (24) and (26) are 
shown in Fig. 6.  

C. Input/Output Logic for Data Conversion Between Binary 

and r-ary Domains & Non-Volatile Storage  

In addition to computational logic, WIF's intrinsic 
properties can be utilized for data conversion between binary 

and multi-valued domains. This data conversion technique 
along with non-volatile ME cells are used for latch 
implementation as discussed in Section V. 

1) Binary to Quaternary Conversion: 

 Binary to multi-valued conversion is achieved by using 
weighted interference functions. For binary to r-ary (i.e. radix-
r)‎ conversion,‎ each‎ binary‎ digit‎ is‎weighted‎ according‎ to‎ its’‎
least significant bit position. For binary inputs (An−1, ..., A1, 
A0), the weighted interference function to convert to r-ary 
output Y is: 

𝒀̃ = 𝐈(20𝑨̃0, 21𝑨̃1, 22𝑨̃2, … , 2n−1𝑨̃𝑛−1), where n is the 

number of bits. 

Here, 𝑨̃𝑖 is the input wave corresponding to bit Ai. The 
weights can be implemented either with amplification ME cells 
or by replicating the particular input wave. The same principle 
can be applied to convert binary data into quaternary. All 
possible combinations for two-bit binary inputs, and their 
corresponding quaternary output is shown in Table 2. The WIF 

implementation of binary to quaternary conversion logic is 
shown in Fig. 7a, where the weight for A1 is implemented by 
replication.  

2) Quaternary to Binary Conversion: 

 The following principle is used for converting r-ary logic 
state to equivalent binary using WIF. By implementing 
majority function based on the phase of the multi-valued logic 
state, an r-ary input (A) can be decomposed to binary outputs 
(On−1 ....O1O0), where n represents number of bits and 2

n
 = r. 

The LSB (O0) is computed first using an output ME cell and 
external circuitry, which generates constant amplitude with 

 
 

Fig. 7. a) Binary to Quaternary conversion. b) Quaternary to binary conversion logic; Binary most 

significant bit generation from phase information of the quaternary state (left), binary least significant bit 

generation by interference logic (right).  

Table 2 . Binary and quaternary logic states and data 

representations 

Binary 

Value 

A1A0 

Binary Spin 

Wave  

Equivalent 

Quaternary 

Logic State 

Quaternary 

Spin Wave 

Representation 

00 𝐴𝑒𝑖0, 𝐴𝑒𝑖0 0 3𝐴𝑒𝑖0 

01 𝐴𝑒𝑖0, 𝐴𝑒𝑖π 1 𝐴𝑒𝑖0 

10 𝐴𝑒𝑖π, 𝐴𝑒𝑖0 2 𝐴𝑒𝑖𝜋 

11 𝐴𝑒𝑖π, 𝐴𝑒𝑖π 3 3𝐴𝑒𝑖𝜋  
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either positive or negative phase. The remaining output bits 
(Od−1….O1) are generated with similar constant amplitude 
generating ME cells. The interference function is: 

𝒀̃ = 𝐈(𝑨̃, −(2n − 1)𝑶̃𝑛−1, … , −(2n − i +

1)𝑶̃𝑛−𝑖+1), where n is the number of bits. 

Here, 𝑶̃𝑖  represents the output wave corresponding to 

output bit Oi, and 𝑨̃ is the input quaternary wave. Using these 
rules we can convert quaternary logic to binary. A single 
quaternary input (A) will have two binary outputs (O1O0). The 
binary MSB output (O1) is 1 only for quaternary input states 2 
and 3 (Table 2), and 0 for quaternary input states 0 and 1. The 
phase dependent ME cell along with external CMOS circuitry 
generates spin wave with positive or negative phase and 
constant amplitude (Fig. 7b (left)), which is the MSB bit (O1) 
for binary representation. The LSB (O0) is generated by 
subtracting the weighted MSB (O1) from the quaternary input 
(A) as shown in Fig. 7b (right). 

3) Non-Volatile Storage  

As discussed earlier in Section II and in ‎[2]‎[12]‎[5]‎[3], ME 
cells can be used as non-volatile storage elements. Upon 
switching, depending on the energy barrier between two 
magnetization states, ME cells can preserve their state 
(magnetization state 0 or π) for very long time without 
requiring any external power supply. This property of ME cell 
is utilized along with data conversion units to implement latch 
for weight update in neuron circuit, as discussed in next 
section. 

IV. NEURON IMPLEMENTATION IN WIF 

Key‎ characteristics‎ of‎ biological‎ neuron’s‎ computation‎
include event-based processing on analog data, parallel 
computations, redundancy, connectivity, adaptation and 
learning, under extreme energy constraints. To map these 
characteristics, research direction so far has primarily focused 
on implementations using analog and digital CMOS. Analog 
CMOS implementations, while being compact, suffer from 
scalability and flexibility issues since analog CMOS 
components (e.g., capacitors, analog transistors) scale poorly, 
and are usually fully customized for each technology/design. In 

addition, they also face density and connectivity challenges ‎[1]. 
On the other hand, digital CMOS components scale 
aggressively, and digital CMOS neuromorphic architectures 
are flexible in terms of design (support modular design, 
reconfiguration, memory augmentation, etc.). However, digital 
CMOS implementations use Boolean data representation. As a 
result, various levels of abstraction are used to represent 
equivalent behavior of a neuron, which is very inefficient 
resulting in density and power overhead. 

In this section we present a neuron implementation in the 
WIF framework, which closely maps some of the key 
computational characteristics of biological neurons. By 
harnessing intrinsic properties of nanoscale components for 
multi-valued data representation, communication and 
computation, and by designing core logical constructs to 
achieve arithmetic operations efficiently, the WIF based 
neuron implementation solves CMOS challenges and achieves 
orders of magnitude benefits in comparison. Moreover, since 
all computations are performed in the spin domain, extreme 
low power operations are achieved for neuron implementation 
in WIF compared to CMOS. Analog implementation benefits 
are matched by using multi-valued data representation and 
computation in a compact form, while digital implementation 
benefits are matched by using emerging nanoscale components 
in a flexible framework that uses logic, arithmetic, input/output 
and storage units. Connectivity requirements are significantly 
lowered in WIF-based implementation, since multi-valued 
communication is achieved through spin waves, and multi-
valued logic and arithmetic functions are achieved in a 
compact form through wave interference functions. 

The neuron implementation in WIF is shown in Fig. 8; it 
performs the integrate-and-fire operation. Similar to biological 
neuron, the weighted excitatory/inhibitory inputs are integrated 
over time and a spike is fired if the integrated sum is greater 
than spike threshold.  The input and output of the neuron 
circuit shown is in quaternary multi-valued WIF, and all 
computation is done with quaternary data. The neuron 
implementation in Fig. 8 uses a multiplexer for input selection, 
adder block for integration, threshold comparator for 
comparison, and input/output conversion units together for 
latching and feedback.  Inter-block communication is achieved 

 
Fig. 8. Neuron implementation in WIF. The block diagram shows implementation details and interconnection. All input/output 

communication is through SWBs, data representation and computations are done in Quaternary logic. Summation results are stored in 

ME cells by Quaternary to Binary conversion and storage.  
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through spin-wave buses. This quaternary data based neuron 
implementation can be extended for any r-ary data based 
neuron implementation in WIF. 

At a functional level the neuron implementation follows the 
equation: 

𝑉𝑝𝑟𝑒𝑠𝑒𝑛𝑡 = 𝑉𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 + 𝑆+ − 𝑆− −  𝜆  

where V represents membrane potential (integration result). 
Vprsent is the potential at time t and Vprevious is the potential at 
time t-1. S+ and S- are weighted excitatory and inhibitory 
inputs, and λ is the reset input. If Vpresent exceeds a threshold ϴ, 
a spike is generated and Vpresent is set to an initializing value.  

The input and output of neuron implementation in Fig. 8 
are through spin-waves, and data encoding follows quaternary 
representation discussed in Section II. A 4:1 Multiplexer is 
used to select from three inputs S+, S-, and λ. Synaptic Inputs 
(S) from other neurons are passed through the multiplexer 
using Identity and Complementary operators ‎[2]‎[5] to represent 
excitatory (S+) or inhibitory (S-) inputs. Each of the S+, S-, and 
λ inputs are 4-digit wide. An 8-digit adder is used to add two 4-
digit quaternary operands, and to handle overflow under worst-
case conditions. Although the full width 8-digit adder is not 
necessary for this design, it was incorporated for equivalent 
comparison with an industrial design ‎[9]. Storing the 
summation results for integration over time is a key 
requirement in a neuron circuit. We use the ME‎ cell’s‎ non-
volatility to meet this requirement. Since ME cells can only 
retain‎ the‎ magnetization‎ state‎ (phase‎ 0‎ or‎ π),‎ the‎ quaternary 
data needs to be converted to Binary. The 8-digit Quaternary to 
Binary conversion unit shown in Fig. 8 is used for this purpose. 
Whenever, a new synaptic input is available the binary data is 
converted back to quaternary using the 8-digit Binary to 
Quaternary conversion unit, for summation purposes. The 
integration result is compared with the threshold ϴ using 4-
digit Threshold comparator. In this digit-wise comparison, 
most significant digit is compared with that of ϴ. The same 
Threshold comparator can be extended with Min, Max 
operators to do any data comparison.      

The 4:1 Multiplexer used in Fig. 8, is extended from the 
based 2:1 Multiplexer design presented in Section IIIA. The 8-
digit adder uses 8 quaternary Full-Adders (Section IIIB) in a 
ripple carry design. The data conversion units used are 
extended to for 8-digits, and follow the same design principle 
as presented in Section IIIC. The threshold comparator is an 
extension of the 1-digit comparator discussed in Section IIC. 
Since the WIF-framework based neuron design is component 
centric and each component can be extended to support higher-
digits and any r-radix based implementations, this design is 
very flexible. In addition, the core neuron circuit can be 
extended with ME cell based memory components or a spin-
wave based memory grid ‎[5] to support weight adaptation and 
learning.  

V. BENCHMARKING VS. CMOS NEURONS 

To evaluate the potential of this Neuromorphic cell 
architecture implementation in WIF, extensive benchmarking 
was done with respect to binary CMOS. The neuron circuit 
presented in the previous section that operates on 4-digit inputs 

was compared against equivalent Digital CMOS based 
industrial design ‎[9] with 8-bit inputs at 45nm. In addition, to 
study the scalability potential of neuromorphic architecture 
implementation in WIF, we have studied the scalability aspects 
of core arithmetic circuits, and benchmarked with equivalent 
CMOS; 4-, 8-, 16- and 32-bit ripple carry adders were designed 
and compared against equivalent CMOS at 45nm.  

For WIF evaluation the parameters were based on 
experimental evidence and numerical simulations ‎[12]‎[7]‎[3]: 
The wavelength of the spin wave was taken to be 100nm. 
Accordingly, ME cell dimensions of 100nmx100nm were used, 
and the spin wave bus length was considered in multiples of 
100nm. The group velocity of the spin waves was assumed to 
be 10

4
 m/s. The switching delay of the ME cell was taken to be 

100ps. The total delay of a WIF circuit was calculated as the 
sum of ME cell switching delay and propagation delay of the 
spin waves along the longest path (critical path delay).  

Energy consumption in WIF is mainly attributed to ME cell 
switching for generating new waves, amplification and 
latching. Spin wave propagation does not involve any physical 
movement of charge particles. Therefore, total energy of 
circuits is calculated based on the number of ME cells (NME) 
and the energy consumption per ME cell (EME): 

E = NME × EME 

The ME cell structure represents a parallel plate capacitor 
consisting of a non-magnetic metallic layer (e.g. Al), a layer of 
piezoelectric material (e.g. PZT), and a conducting 
magnetostrictive material (e.g. Ni). The total energy consumed 
by ME cell per switch can be calculated as follows ‎[4]‎[14]: 

𝐸𝑀𝐸 =
𝐶𝑉2

2
=  

𝜖0𝜖𝑟 𝐴𝑉𝜋 6⁄
2

2𝑑
 

Where 𝜖0  is the vacuum permittivity, 𝜖𝑟  is the relative 
permittivity of the piezo-electric, A is the surface area of the 
ME cell, d is the thickness of the dielectric layer, 𝑉𝜋 6⁄  is the 

voltage required for 30 degree magnetization rotation. In order 
to provide high-frequency spin wave excitation, the thickness 
of the piezoelectric layer should be adjusted to the spin wave 

 

Table 3. Comparison of Neuron Implementation in WIF 

vs. CMOS 

 
Area (µm2) Delay (ps) Power (µW) 

CMOS WIF CMOS WIF CMOS WIF 

16-bit 
Neuron 

Core 

1785 30.9 1480 726 18000 23.2 

 

Table 4. Scalability Study of High-Bit Width Arithmetic 

Circuits For Neuromorphic Computation 

 
Area (µm2) Delay (ps) Power (µW) 

CMOS WIF CMOS WIF CMOS WIF 

16-bit 

Adder 
1700 27 1400 515 14600 17 

32-bit 

Adder 
3410 54 2800 915 29200 33 

WIF‎ Parameters:‎ [λ=100nm,‎ME‎ cell‎ area‎ =‎ λxλ,‎ ME delay = 

100ps, Wave velocity  = 104 m/s, ME switching power =100nW] 
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frequency (e.g. d = 0.8µm for resonance frequency of 1GHz). 
Taking the following data: 𝜖0 = 8.854 × 10

−12
F /m, 𝜖𝑟 = 1700 

for PZT, A = 100nm ∗ 100nm, d = 0.8µm, 𝑉𝜋 6⁄  = 0.4MV/m × 

0.8µm = 0.32V, we would require approximately 10aJ of 
energy for ME cell switching. The energy per switch scales 
proportional to the size of the ME cell and may be reduced 
further by optimizing the material structure and switching 
dynamics. 

Area of WIF circuits was calculated based on ME cell 
dimensions and patterning area required for SWB with the 
above assumptions. All quaternary adders were designed using 
multi-valued operators, and followed the design principles 
illustrated previously. CMOS designs for the adders were 
defined in Verilog and synthesized using Synopsys Design 
Compiler in 45nm node using North Carolina State University 
(NCSU) Product Development Kit (PDK). Performance and 
power for CMOS were calculated using HSPICE simulations. 
The benchmarking results are shown in Table 3 and Table 4. 

Promising benefits are achieved across all metrics for WIF-
based implementations. As shown in Table 3, WIF based 4-
digit Quaternary neuron implementation achieves 57x density, 
775x power and 2x performance benefits over equivalent 8-bit 
Boolean Digital CMOS-based design at 45nm technology 
node.  Our scalability to higher bit-width study (see Table 4) 
indicates that even more substantial benefits can be attained if 
the neuron implementation is extended to 16-digits. The 16-
digit quaternary full adder shows 63x density, 884x lower 
power and 3x performance improvement vs. 32-bit CMOS.  

The substantial improvement in power consumption is due 
to the low ME cell switching power, and overall low-energy 
computation and communication in WIF without charge 
transfer. The density benefits are primarily‎ due‎ to‎ WIF’s‎
inherent support for multi-valued logic. The implementation 
through multi-valued operators leads to compact circuits. 
Reduced communication requirements are achieved through 
multi-valued wave propagation.  

VI. CONCLUSION 

We presented a new approach towards neuromorphic 
computing using a spin-domain multi-valued WIF framework. 
The neuron circuit presented, leverages intrinsic properties of 
WIF’s‎ nanoscale‎ components‎ for‎ multi-valued data 
representation, communication and computation, as well as its 
core logical constructs to achieve functionality equivalent of a 
biological neuron. Significant benefits were projected across 
all aspects; the WIF framework based neuron implementation 
showed 57x, 775x and 2x benefits in terms of area, power, and 
performance compared to an equivalent 45nm CMOS design. 
The scalability studies for higher bit-width neuromorphic 
architectures indicated that additional benefits can be attained 
with bit-width scaling; the 16-digit quaternary adder design in 
WIF showed 63x density, 884x power and 3x performance 
benefits compared to a 32-bit CMOS adder at 45nm 
technology. The transformative new approach for 
neuromorphic computing presented in this paper, can provide 
the basis for novel neuromorphic architectures.  
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