Cool-Mem: Combining Staticall y Speculative Memory
Accessing with Selective Address Translation for Energy
Efficienc y

Raksit Ashok

Saurabh Chheda

Csaba Andras Moritz

Department of Electrical and Computer Engineering
University of Massachusetts, Amherst, MA 01003

{rashok, schheda, andras}@ecs.umass.edu

ABSTRACT

This paper presents Cool-Mem, a family of memory system
architectures that integrate conventional memory system
mechanisms, energy-aware address translation, and compiler-
enabled cache disambiguation techniques, to reduce energy
consumption in general purpose architectures. It combines
statically speculative cache access modes, a dynamic CAM
based Tag-Cache used as backup for statically mispredicted
accesses, various conventional multi-level associative cache
organizations, embedded protection checking along all cache
access mechanisms, as well as architectural organizations
to reduce the power consumed by address translation in
virtual memory. Because it is based on speculative static
information, the approach removes the burden of provable
correctness in compiler analysis passes that extract static
information. This makes Cool-Mem applicable for large and
complex applications, without having any limitations due
to complexity issues in the compiler passes or the presence
of precompiled static libraries. Based on extensive evalua-
tion, for both SPEC2000 and Mediabench applications, 12%
to 20% total energy savings are obtained in the processor,
with performance ranging from 1.2% degradation to 8% im-
provement, for the applications studied.

1. INTRODUCTION

The memory system is a major source of power consump-
tion in contemporary processors. For example, the caches
and translation look-ahead buffers (TLB) combined con-
sume 23% of the total power in the Alpha 21264 [9], and
caches draw 42% of the energy in the StrongARM 110 [19].
With the current trend of ever-increasing on-chip cache sizes,
the fraction of the power consumed by caches is likely to fur-
ther increase. This trend fuels research to reduce power dis-
sipation in memory systems by addressing power efficiency
at all system layers: circuit, architecture, and/or software

Permissionto malke digital or hard copiesof all or part of this work for
personalor classroomuseis grantedwithout fee provided that copiesare
not madeor distributedfor profit or commercialadvantageandthatcopies
bearthis noticeandthefull citationonthefirst page.To copy otherwiseto
republisho poston senersor to redistrituteto lists, requiresprior specific
permissiorand/orafee.

ASPLOSX 10/02SanJose CA, USA

Copyright 2002ACM 1-58113-574-2/02/0010.$5.00.

levels.

The architectural remedies proposed (e.g., in the con-
text of caches [16, 10, 11]) are typically based on resiz-
ing of resources, driven by dynamic runtime information
or apriori application execution profiling. In contrast, this
paper presents Cool-Mem, a family of memory system ar-
chitectures, that is enabled by speculative static compile-
time information. Cool-Mem integrates conventional mem-
ory access mechanism with compiler enabled techniques and
energy-aware address translation, to reduce energy consump-
tion, further blurring the interface between compiler and ar-
chitecture. Our experimental results confirm our intuition,
that combined compiler-architecture based designs open up
new smart ways to reduce power consumption and in many
cases even improve application performance.

But how can we benefit from static information? Cool-
Mem uses static program information about memory ac-
cess types and patterns, to reduce some of the redundancy
in conventional memory access mechanisms. This redun-
dancy in current memory system architectures is due to the
general one-size-fits-all design philosophy, where all memory
accesses are treated equal, i.e., having one single dynamic
approach for all situations. For example, each memory oper-
ation typically requires a TLB access for virtual-to-physical
address translation or for protection checking, each cache
access requires a TAG check, and every single associative
cache access requires associative lookup of multiple tags and
cache blocks for one single word returned. As we will show
in this paper, a large fraction of this redundancy can actu-
ally be eliminated, resulting in significant power and energy
savings.

Cool-Mem architectural components include: (1) support
for statically speculative cache access modes, (2) a dynamic
CAM based Tag-Cache used as backup for statically mispre-
dicted accesses, (3) a conventional virtually tagged and in-
dexed multi-level associative cache organization, (4) embed-
ded protection checking along all cache access mechanisms,
and (5) a variety of techniques (this because we study a num-
ber of different organizations, each with advantages and dis-
advantages) in supporting power-aware address translation
in virtual memory architectures.

The Cool-Mem compiler extracts speculative static infor-
mation, using it to match different types of accesses to dif-
ferent cache access modes. Because it is based on specula-
tive static information, the burden of provable correctness

in the compiler analysis passes is removed. The analysis
can be completed without having access to all the source
codes, something that we have found to be very useful, for
example, in applications with frequent calls to precompiled
static libraries. Furthermore, the level of speculation can be
decided at compile time.

The main contribution of Cool-Mem is that it provides
a hybrid power-aware memory system solution, a design
where conventional hardware techniques are extended to
support integration with compiler managed memory access
techniques, a system that is applicable and works for large
and complex programs without restrictions. To the best of
our knowledge, there have been no efforts on incorporat-
ing compiler-driven statically speculative techniques in gen-
eral purpose memory systems for power and energy savings.
Based on extensive evaluation, for both SPEC2000 [27] and
Mediabench [17] applications, we obtain energy savings from
11% to 20% in the processor. The performance obtained
ranges from 1.2% degradation to 8% improvement.

The rest of this paper is structured as follows. Section 2
presents the related work as well as a discussion of design
challenges in virtual cache organizations. Next, we present
some background on typical memory system designs in Sec-
tion 3. The Cool-Mem architecture is described in Section 4
followed by Section 5 on the compiler techniques. Section 6
details the experimental framework used, Section 7 discusses
the results, and we conclude in Section 8.

2. PREVIOUS WORK

Previous research focusing on TLB power consumption
includes the work by Juan et al. [15], where they compare
fully-associative, set-associative, and direct mapped TLBs
from a power perspective. They also propose modifications
to the basic cells and the structure of set-associative TLBs
to reduce power. Wood et al. [31] propose the use of large
virtually tagged and indexed caches to delay the need for
address translation until cache misses. Virtual to physical
address translation on cache misses is done by a hardware
page table walking mechanism. Recent papers by Jacob and
Mudge [14, 13] also propose a virtually addressed caching
architecture with software based cache miss handler, but
evaluate only from a performance perspective.

A sizable amount of work has been done toward improv-
ing the energy-efficiency of caches. Kin et al. [16] propose a
small L0 cache that saves energy when data can be found in
this cache, while degrading performance by 21%. A cache
way-predicting technique proposed by Inoue et al. [11] saves
energy on correct prediction by accessing only the matching
way instead of all the ways in a set-associative cache. A
recent paper by Huang et al. [10] also uses a similar way-
prediction scheme. Their cache partitioning scheme includes
a specialized stack cache and compiler implementation con-
cerns are addressed. Powell et al. [23] combine way predic-
tion with selective direct mapping to reduce cache energy
consumption. Ma et al. [18] propose a deterministic way-
memoization scheme as an alternative to way-prediction.
Zhang and Asanovic [32] examine Content Addressable TAG
(CAM) caches for low power. These techniques are purely
architecture based, in contrast to our combined compiler-
architecture approach.

A compiler enabled scheme, has been proposed by Moritz
et al. [20, 21] in the context of software caches for MIT-RAW
processors. Our previous work for embedded systems [28]

utilizes a compiler-managed technique in the context of em-
bedded processors, in a tag-less single-level cache organiza-
tion, using the MediaBench for evaluation. Our Cool-Mem
compiler techniques expand the scope to handle complex
program structures, support different levels of speculation,
and focuses on multi-level memory systems incorporating
virtual memory support.

Compiler enabled techniques targeting cache energy also
include the recent work by Witchel et al. [30]. Their scheme
saves the tag-check energy when the compiler can guarantee
an access will be to the same line as an earlier access. The
work is similar to the predictable cache access mechanism
described for Raw processors in [21]. Additionally, their
technique works primarily for applications with predictable
data accesses, focusing mainly on affine array accesses and
simple loop structures, and affects code size.

Physically addressed caches are becoming increasingly un-
feasible with growing cache sizes [22]. Cool-Mem proposes to
build on virtual cache hierarchies (several configurations are
evaluated) that have the advantage of moving address trans-
lation to lower levels in the memory hierarchy and thus sav-
ing on power consumed for address translation (e.g., rather
than doing address translation for every single memory ac-
cess, one would need to do it only for L1 cache misses or for
L2 cache misses depending on the Cool-Mem design).

Virtually addressed caches come with their share of prob-
lems. The well known synonym problem is detailed in the
work by Goodman [8]. Both hardware and software solu-
tions to these problems have already been proposed [8, 29].
This problem is a primary concern in a virtual-virtual cache
hierarchy, but could be easily dealt in a hierarchy involv-
ing a virtually-addressed first level cache and a physically
addressed second level cache [29].

Additionally, the problem can also be overcome by dis-
allowing aliasing altogether. This can be accomplished by
providing a global address space model. Another way is to
force shared data to align in the cache, or require that shared
data be non-cacheable [5]. Furthermore, other solutions al-
low arbitrary aliases but implement a consistency protocol
in hardware [29]. Other hardware based techniques to deal
with the synonym problem are based on ideas such as back
pointers [29] or dual tag sets (having both a physical and a
virtual tag), or reverse translation tables [26] that translate
physical addresses into virtual addresses.

As mentioned earlier, a software based solution to solve or
avoid aliasing is also possible, based on setting operating sys-
tem policy. If energy-efficiency is an important design con-
straint, this approach together with other techniques that
avoid dealing with aliasing are to be preferred. The IBM
OS2 operating system for example, places all shared seg-
ments at identical virtual addresses in all process address
spaces. SunOS uses a different approach; it aligns shared
pages on large virtual boundaries, making sure that aliases
map to the same cache block [4]. Single address space oper-
ating systems like Opal [3], that use global addresses, would
not have to deal with aliasing. Such systems eliminate the
need for virtual-address aliasing by having all shared data
through global references, allowing pointers to be shared
freely.

A solution that has been used to deal with the problem
of integrating physical IO into virtual memory hierarchy is
to use reverse translation tables. DMA accesses can be sup-
ported by flushing affected cache blocks before the transfer

lw/sw rl, r2, offset @ Register File
Effective Address .
Calculation : ~—r2

@ [sign ext.virPage numbkvirPage offsef
TLB

ASID} nhvsicaIPao‘&evirPaa
| |
.
L]
L

TLB Hit
protection [Tag | Index| Offset]
fault? ¢
TLB Miss
Tag-checks
T o
R e
Y Y
o -<— Index
. 230 . 230
. Sle ° Sle
Data, Array | (§'e @ Datag Array | |B's @ @
A (77 L . (7') *
Way 3 Way 0
lLl Miss
L2 Hit L2 Miss

Figure 1: The baseline memory system. All accesses
require a TLB access and tag-checks.

or having regions in the cache that are non-cacheable.

To the best of our knowledge, Cool-Mem is the first com-
prehensive work that presents and evaluates a combined
compiler-architecture scheme targeted at general purpose
architectures, that extracts energy savings from the com-
plete memory system, including both the translation hard-
ware and the cache hierarchy.

3. BACKGROUND

Contemporary microprocessors have complex memory sys-
tems that differ from each other in the way caches are ac-
cessed, TLB-misses are handled, etc. Nonetheless, the defin-
ing features remain the same. To model these in our baseline
architecture, we have chosen an Alpha-like [6] memory sys-
tem architecture, with physically tagged and indexed caches.

Figure 1 shows the components of this architecture. Each
memory instruction has 3 operands: the destination register
rl, base register r2, and an immediate offset. The base and
offset are used to calculate the effective address, shown as
step 1 in the figure. The generated 64-bit virtual address is
then translated into a physical address by the TLB (step 2).
Each access is associated with a 7-bit Address Space Iden-
tifier (ASID) which is also fed to the TLB to check access
rights. TLB-misses are handled by a hardware page-table
walking mechanism.

The cache index component of the virtual address is used
to index into one of the cache sets. This enables the 4 cache
lines and associated tags in that set of the 4-way cache (this
can be extrapolated for higher associativity caches). The
tag component of the virtual address is compared with the
4 cache-tags in parallel (step 3). At the same time as these
tags are being compared, the 4 cache lines are accessed in
parallel (step 3), and the cache-line offset is used to index
the required word in the lines. Depending on which of the

cache-tags match, if any, one of these words is selected and
the access is satisfied. A miss in the L1 cache goes to the
L2 cache which is similarly accessed.

The three energy-consuming components in an L1 access
are: (1) fully-associative TLB access, (2) 4 parallel tag-
checks, and (3) 4 parallel cache line accesses. We target
these components to extract energy savings in Cool-Mem.

4. COOL-MEM ARCHITECTURE

We proceed by providing an overview of the Cool-Mem
architecture and follow with detailed discussions on the key
features of this architecture.

We propose and evaluate two different organizations. In
both organizations we use a virtually-indexed and virtually-
tagged first level cache and move address translation to lower
levels in the memory hierarchy. As second level, we evalu-
ate both a physically-indexed and a virtually-indexed cache.
As described in Section 2, some of the design challenges in
virtual-virtual organizations (e.g., the synonym problem, in-
tegration in bus based multiprocessor systems, and context-
switching with large virtual L2s) could be handled easier
in virtual-physical designs. In both organizations, we add
translation buffers. In the virtual-virtual (v-v) organization,
a translation buffer (MTLB) is added after the L2 cache and
is accessed for every L2 cache miss. If maximum flexibility
is desired in the way paging is implemented in the operat-
ing system, the TLB-less design is a reasonable option, as
shown by our experimental results. In the virtual-physical
organization (v-r), a translation buffer (STLB) is added af-
ter the L1 cache and is accessed for every L1 cache miss or
every L2 cache access.

An overview of the different cache organizations with ad-
dress translation moved towards lower levels in the cache
hierachy is shown in Figure 3. As address translation con-
sumes a significant fraction of the energy consumed in the
memory system, both the v-v and v-r designs will save en-
ergy compared to a physical-physical (r-r) cache hierarchy,
where virtual-to-physical address translation is done for ev-
€ry memory access.

Although TLB-less designs have been suggested in v-v
type of organizations before, we are not aware of any pro-
posal where address translation is done with translation
buffers for L2 cache misses, as opposed to implemented in
software exception handlers. Similarly, v-r designs have
been applied recently (e.g., StrongARM SA-1100 processor),
these designs typically do the address translation in parallel
with the L1 cache access. A context-switch between threads
belonging to different tasks may require change in virtual
address mappings. To avoid flushing the TLBs, we added
address-space identifiers to TLB entries.

Figure 2 presents an overview of the Cool-Mem memory
system, with integrated static and dynamic access paths.
Cool-Mem extends the conventional associative cache lookup
mechanism with simpler, direct addressing modes, in a vir-
tually tagged and indexed cache organization. This direct
addressing mechanism eliminates the associative tag-checks
and data-array accesses. The compiler-managed specula-
tive direct addressing mechanism uses the hotline registers.
Static mispredictions are directed to the CAM based Tag-
Cache, a structure storing cache line addresses for the most
recently accessed cache lines. Tag-Cache hits also directly
address the cache, and the conventional associative lookup
mechanism is used only on Tag-Cache misses. Integration of

Static Register File Dynamic
(Iw/sw)hl r1, r2, offset, hlid . Iw/sw 1, r2, offse
. — 12

i 47 offset
Effective Address
Calculation

~ " Hotline Registers’
ASID [Wav [Taqlnde [sign ext] virPage numbkvirPage offspt
|

‘ } @ [Tag [Index] Offset]
b -

protection Tag-Cache

fault? @ TagindeX Way | ASID
——— YV otiine MISS e
[Hotllne Hit/Miss? | .

update*
Hotline HIT| P :

Wa) Index Offset
y | Tag-Cache HIT | update

ttt

f

l protection
Tag-Cache MISS fault?

~—
Tag-less Access @ Tag-checks

Figure 2: The Cool-Mem memory system.

protection-checks along all cache access paths enables mov-
ing address translation to lower levels in the memory hier-
archy or TLB-less operation. In case of TLB-less designs,
an L2 cache miss requires virtual-to-physical address trans-
lation for accessing the main memory; a software virtual
memory exception handler can do the needful.

4.1 Hotline Registers

The conventional associative lookup approach requires 4

parallel tag-checks and data-array accesses (in a 4-way cache).

Depending on the matching tag, one of the 4 cache lines
is selected and the rest discarded. Now for sequences of
accesses mapping to the same cache line, the conventional
mechanism is highly redundant: the same cache line and tag
match on each access. Cool-Mem reduces this redundancy
by identifying at compile-time, accesses likely to lie in the
same cache line, and mapping them speculatively through
one of the hotline registers (step 1 in Figure 2). As shown
in [7] the condition that the hotline path evaluates can be
done very efficiently without carry propagation. The hot-
line cache access can also be started in parallel with the
check, with the consequence that in case of incorrect predic-
tion some additional power is consumed in the data-array
decoder. This power is included in our experimental results
using Wattch. As a result, the primary source of latency for
hotline based accesses, is due to the data array access and
the delay through the sense amps. Note that conventional
associative cache designs require an additional multiplexer
stage to select between ways in a multi-way access. Further-

‘ -V Li-v
N
T,
[L2-R| L2-R| \ RN
wrLe)
R-R V-R V-V

Figure 3: Various cache organizations, with address
translation moved toward lower levels in the memory
hierarchy.

more, as shown in [24], the critical path is typically the tag-
path; the tag latency can be as much as 30% larger than the
latency of the data-array path in the conventional design.
As shown in [12], reduced feature sizes in next generation
architectures will further accentuate the latency increase of
the tag path. Because of this, in conventional cache de-
signs, the way-selection logic is moved toward the tag to
re-balance the delay differences between the tag and data-
array paths [24]. However, in Cool-Mem the latency of the
data-array could be the main target for optimizations, as
the tag path is not on the critical path for most of the mem-
ory accesses, by adequate bitline and wordline partitioning.
As such, we expect that a Cool-Mem based microprocessor
could either have a faster clock or at least a faster cache
access for statically predicted cache accesses.

The different hotline compiler techniques are described in
Section 5. A simple run-time comparison (step 2) reveals
if the static prediction is correct. The cache is directly ac-
cessed on correct predictions (step 3), and the hotline reg-
ister updated with the new information on mispredictions.
We have included a fully associative lookup on the hotline
registers to support invalidations.

As shown in Figure 2, the hotline register has 3 compo-
nents: (1) protection bits (ASID), which are used to enforce
address space protection, (2) TagIndex - two accesses are
to the same cache line if their Tag and Index components
are the same. The TagIndex component is compared with
Tag and Index of the actual access to check if the hotline
register can indeed be used to directly address the cache,
(3) cache-way information - this information enables direct
access to one of the ways in the set-associative cache.

4.2 Tag-Cache

Another energy-efficient cache access path in Cool-Mem is
the CAM-based Tag-Cache. It is used both for static mispre-
dictions (hotline misses) and accesses not mapped through
the hotline registers, i.e., dynamic accesses (step 4). Hence it
serves the dual-role of complementing the compiler-mapped
static accesses by storing cache-line addresses recently re-
placed from the hotline registers, and also saving cache en-
ergy for dynamic accesses; the cache is directly accessed on

for (i=0;i <100; i++)a[b[i]] = 0;
A Hotline-hits Hotline-misses

2| .]
2 . _ line

& a[b[i]])

cacheTLB-hits i

Figure 4: Hotline-misses hitting the Tag-Cache. We
found that aggressively speculative hotline accesses that
cause hotline-misses, hit the Tag-Cache with good prob-
ability.

Tag-Cache hits (step 3).

The motivation behind using the Tag-Cache as a backup
mechanism for hotline registers is illustrated by the example
in Figure 4. Due to the irregular nature of a[b[i]] accesses,
it is unknown at compile-time if successive accesses are spa-
tially close, i.e., likely to map to the same cache line, and
therefore should be hotlined. For the pattern shown in Fig-
ure 4 all the alternating accesses will be hotline hits but are
captured by the Tag-Cache due to its associative nature. In
general, the Tag-Cache acts as a very good backup because
it contains previously predicted hotline entries and does a
fully associative search on these.

Although the Tag-cache access is very quick, we assume
(conservatively) that the Tag-Cache, accessed on hotline
misses, requires another cycle, with an overall latency simi-
lar to a regular cache access in an r-r organization. A missin
the Tag-Cache implies that we fall back to the conventional
associative lookup mechanism with an additional cycle per-
formance overhead (step 5). The Tag-Cache is also updated
with the new information on misses. As seen in Figure 2,
each Tag-Cache entry is exactly the same as a hotline reg-
ister, and performs the same functions, but dynamically.

4.3 Associative Lookup

The Cool-Mem associative cache lookup is slightly dif-
ferent from the conventional lookup in that the protection
information (ASID) is also tagged to each cache line. Even
the virtually addressed L2 cache is tagged with protection
information in the v-v design to enable TLB-less L2 access.

5. COOL-MEM COMPILER

The Cool-Mem compiler is responsible for identifying groups

of accesses likely to map to the same cache-line, and map-
ping them through one of the hotline registers. This hotline
pass expands on our previous work [21, 20, 28], adding sup-
port for various levels of speculation and leveraging type
information to enlarge its scope to all types of memory ac-
cesses. As opposed to our previous work we do not use alias
analysis. We found that for large applications such as those
in SPEC2000, a flow-sensitive and context-sensitive analysis

is not practical due to complexity issues, static library calls,
and because of complex program constructs such as pointer
based calls and recursive procedures found in many of these
programs.

We implement various levels of speculation in the hotline
pass. Specifically, we have implemented two hotline passes:
(1) Optimistic Hotlines, where the compiler tries to map
all accesses through the hotline registers, and (2) Conserva-
tive Hotlines, which maps a subset of the accesses that are
more regular in nature and as a result, are likely to cause
fewer mispredictions. We now present these two compiler
techniques.

5.1 Optimistic Hotlines

The hotline pass works on a per procedure basis, see Al-
gorithm 1. The input to this algorithm is the set of hotline
registers, {ri, r2, ..., I',}, and the control flow graph (CFG)
of the function. It parses through the CFG, mapping each
access through one of the hotline registers. To decide which
of the h hotline registers to map an access through, it com-
pares this access with all the h previous accesses currently
mapped through the A hotline registers, and finds the one
spatially closest to this access. If the distance between these
is small compared to the cache line-size, they are very likely
to lie in the same cache line, and therefore the current access
is mapped through the same hotline register as this closest
access. Otherwise, the least recently used hotline register is
picked, and the current access is mapped through this regis-
ter. We chose the threshold distance when two accesses are
mapped to the same hotline as half the cache line size.

In evaluating the distance between two accesses, the hot-
lines pass leverages control-flow, loop structure, and type
information: field offsets in structures, array element sizes,
etc. We now illustrate the working of this algorithm with
some simple examples.

for (i=0; i< 100; i++)
(@) afil{1} = a[i+1){1} + a[i+100]{2} + a[i+103]{2}

b for (i=0; i< 100; i++)
(0) afi{..} = a[i){..}varl.field1{1} + a[i+1}{..}*varl.field2{1}
+ ali+2l{..Yvarl.field10{2}

Figure 5: (a) Example with affine array accesses, (b)
Example with non-array accesses. The numbers in curly
brackets are the hotline registers assigned by the hotline
pass.

Figure 5(a) shows an example with array accesses within a
loop that have constant index differences. Suppose the array
element-size is 4 bytes and the cache line is 64 bytes, imply-
ing a threshold distance of 32 bytes. The hotline analysis
assigns a[i] hotline register r1. Arriving at a[i+1], it checks
the distance from currently mapped accesses, and finds the
closest one to be ali], which is 4 bytes apart. Since this is less
than the threshold, a[i+1] is also mapped through r;. For
a[i+100] however, the closest access is beyond the threshold
(afi+1] is 396 bytes from a[i+100]), and hence a[i+100] is
mapped through a different hotline register r».

The Cool-Mem compiler technique is not limited to ar-
rays. Figure 5(b) shows how non-array accesses are treated.
Suppose varl.field1 has been assigned ri. If the field offsets
for field1, field2, and field10 in the structure variable varl

Algorithm 1 Conservative and Optimistic Hotlines

/* For each routine, start with the first basic block */
for each routine do

E = entry basic block;

for all hotline registers x: 1 toh do

hl_access[x] = NULL;

end for

Hotline Annotate block E;
end for

/* procedure to Hotline Annotate a block X */

*¥%% The Conservative Algorithm skips through ****
/*¥*** pointer-based and non-affine array accesses: ****/
for each access A in X do

distance = o0;
/* find the closest previous access: */
for x from 1toh do
if (proximity(A, hl_access[x]) < distance) then
closest_reg = x and update distance;
end if
end for
/* if accesses close enough, assign the same register */
if distance <= CacheLineSize/2 then
map A through hotline register closest_reg;
hl_access|closest_reg] = A;
update the hotline register LRU list;
else
/* otherwise map through LRU hotline register */
map A through hotline register LRU reg;
hl_access[LRU_reg] = A;
update the hotline register LRU list;
end if
end for
workList = successors of X;
while lempty(workList) do
B = next basic block in workList;
if B.annotated then
continue;
end if
4 * Traverse through the CFG by making recursive calls

Hotline Annotate B;
B.annotated = true;
end while

/* procedure to find the proximity between 2 accesses */
/* proximity(access x, y) */
if x and y are same array accesses with their indices con-
stant ¢ apart then
return ¢ * element-size;
end if
if x and y are fields of the same structure variable then
return difference between field offsets;
end if
if x and y are scalar variables declared distance d apart
in the same symbol-table then
return d;
end if
return oo;

are 0, 4, and 40 respectively, the hotline pass will map field2
through r; (distance 4 bytes from fieldl < threshold) and
field10 through r, (distance 36 bytes from field2 > thresh-
old).

5.2 Consewative Hotlines

This flavor of the hotline pass is more selective in mapping
accesses through hotline registers. The key difference is the
logic for selecting which accesses to map through hotline
registers.

Our experiments have revealed that pointer-based accesses
typically have low static prediction rates, especially without
the information provided by a precise alias analysis pass.
Non-affine array accesses of the form a[b[i]] are also a prime
source of mispredictions. The Conservative Hotlines pass
does not map these two types of accesses through the hot-
lines. This conservative approach thus maps fewer accesses
through the hotline registers than the Optimistic scheme,
but hopes to achieve better prediction rates for these ac-
cesses. An even more conservative approach may not hot-
line even affine array accesses, if the stride information is
unknown at compile-time.

/* Irregular array accesses */ /* Pointer-based accesses *
for (i=0; i< 100; i++) for (i=0;i<100; i++) {
a[b[i]{not mapped} = 0; p—>val{x} = a[il{..};
p{x} = p—>next{x};

(a) (b)

Figure 6: (a) Example with irregular array accesses,
(b) Example with pointer-based accesses. An “x” in the
curly brackets means that the access is not hotlined.

Figure 6(a) gives an example with non-affine array ac-
cesses. Due to the irregular nature of this access, it has
the potential for causing many mispredictions. The Con-
servative Hotlines algorithm does not hotline this access. If
b[i] turns out to be very regular, for example b[i] = i, then
hotlining this access makes sense.

Figure 6(b) presents an example with pointer-based ac-
cesses. The linked-list structure referenced by p is also un-
predictable. Dynamic allocation, insertions and deletions
mean that the memory layout of the list is very irregular.
The conservative approach chooses not to hotline pointer-
based accesses at all.

6. EXPERIMENT AL FRAMEW ORK
We have used the SUIF /Machsuif

suite as our compiler infras-
tructure. Figure 7 traces the
steps involved in going from
the source code to alpha bi-
nary code. The source files
are first compiled into suif code
and merged into one file. All
the high-level compiler analy-
sis passes, including the hotline
pass, operate at this stage. The
hotline pass assigns hotline reg-
isters to memory accesses by an-
notating them. The annotations
are propagated to the binary file
through the intermediate stages.
These Alpha binaries are sim-
ulated on the SimpleScalar [2]
simulator with all the required
modifications in place.

We have used the SimpleScalar [2] simulator with Wattch [1]
extensions for collecting performance and energy numbers.
This simulator, capable of running statically linked alpha

Machsuif passes|
(code generation)

"Mark" hotline
instructions

Cool-Mem
Code Generatior

gcc (assemble to binary;
wattch/Simplescalgr
simulator

Figure 7: Shaded
steps are introduced
by Cool-Mem.

binaries, has been modified to accommodate the Cool-Mem
architecture. It also has the modification required to rec-
ognize the annotated load/store instructions as hotline ac-
cesses.

For evaluation, we use the CPU2000 [27] and Mediabench [17]

applications. Six Mediabench and six CPU2000 benchmarks
have been randomly chosen, see Table 1. To keep the exces-
sively large simulation time for the CPU2000 benchmarks
within manageable limits, we skip the first 500 million in-
structions and simulate the next 1 billion instructions, sim-
ilar to [25].

Table 1: Benchmarks used for evaluation

Benchmark | Description

ADPCM Audio compression (Mediabench)

EPIC Image compression (Mediabench)

G721 Voice compression (Mediabench)

JPEG Image decompression (Mediabench)
MPEG Video decompression (Mediabench)
RASTA Speech recognition (Mediabench)

MCF Combinatorial optimization (CPUInt00)
PARSER Synthetic English parser (CPUInt00)
VPR FPGA circuit place and route (CPUInt00)
AMMP Computational chemistry (CPUFP00)
ART Image recognition/neural nets (CPUFP00)
EQUAKE | Seismic wave simulation (CPUFP00)

Table 2: Baseline System Parameters

[Parameter | Baseline value
Processor Speed 1.5Ghz
Process technology 0.18um, 2V
ITLB 64-entry Fully-assoc.
DTLB 64-entry Fully-assoc.
TLB-miss penalty 20 cycles
L1 D-cache 64k, 4-way, 64byte line
L1 I-cache 64k, 4-way, 64byte line
Unified L2 cache 512k, 4-way, 128b line
L1 D-Cache latency 3 cycles
L2 latency 20 cycles

Main memory latency | 200 cycles + 2cycles/word

Table 3: Power consumption breakdown for the L1
D-cache in Cool-Mem

| Hardware Block

| “ON” Power Consumption |

32 Hotline registers 0.108211W

32-entry Tag-Cache 1.0237TW

Associative Data-array access | 9.59838W

Associative Tag-array access | 1.53072W

7. RESULTS

In this section, we compare the Cool-Mem family with
the baseline architecture. In these experiments, we have ac-
counted for the energy consumed by all the added hardware

blocks and any slowdown incurred. The baseline system
configuration is shown in Table 2. First we show Cool-Mem
results with identical system configuration as the baseline
(see Table 2), for both the virtual-real Cool-Mem architec-
ture (v-r) and the virtual-virtual Cool-Mem architecture (v-
v). Next, we present sensitivity results by changing certain
baseline parameters.

7.1 BaselineCool-Mem Results

The difference between v-r and v-v designs is after the L1
cache layer (TLBs are between L1 and L2 in v-r and after L2
in v-v), and therefore, the L1 D-Cache is accessed exactly
the same way in both v-r and v-v. Hence, the energy and
performance numbers for the Hotlines, the TAG-Cache, and
the L1 caches are same for both v-r and v-v. These results
are discussed in the following paragraphs.

Figure 8(a) shows the percentage of accesses that are hot-
lined and the hit rate on these accesses. On average, 37%
of the accesses for CPU2000, and 45% of the accesses for
MediaBench are hotlined. The remaining accesses, i.e., dy-
namic accesses are caused primarily by library calls, the
source code of which is unavailable during the hotlines anal-
ysis stage. For example, “rasta” makes heavy use of the
math library calls, and the non-library memory operations
are thus a small fraction of the total. As to the hit rates,
56% of the static speculations in CPU2000 and 79% in Me-
diaBench, turn out correct on average.

The performance penalty due to the mispredictions is di-
luted by the backup mechanism: the TAG-Cache. Shown in
Figure 8(b), the TAG-Cache absorbs 47% of the mispredic-
tions in CPU2000 and 87% in Mediabench. Further, as will
be shown, the static hit rate for CPU2000 can be improved
with Conservative Hotlines analysis. Figure 8(b) also shows
the TAG-Cache hit rate on dynamic accesses: this averages
at 87% for CPU2000 and 88% for MediaBench applications.
The overall hit rate is 79% and 89% for CPU2000 and Me-
diaBench applications, respectively.

Figure 8(c) shows the L1 D-Cache access patterns for
CPU2000 and MediaBench applications. The lower bars are
the l-cycle static hits, the middle bars are 2-cycle TAG-
Cache hits, and the upper bars are TAG-Cache misses that
are L1 hits, and the rest are L1 misses. Figure 8(d) shows
the relative energy consumption in the L1 D-Cache, broken
down into various components. 100% corresponds to the
energy consumption in the baseline architecture. The av-
erage relative consumption value is 38% for CPU2000 (or
62% cache energy savings) and 30% for MediaBench (70%
savings).

We next present overall energy and performance results
(these results are different for v-r and v-v). In Figure 9(b),
we show the performance gains in v-r and v-v. For the v-r
design, we get performance ranging from 1.2% degradation
to 8% improvement. On average, a miniscule 0.36% perfor-
mance degradation for CPU2000 and 3.6% improvement for
MediaBench is achieved. Given the good static hit rates,
one would have expected performance improvement for all
applications. The small degradation observed for some ap-
plications is because the TLB is now on the L2 access path,
making L2 accesses more expensive by 1 cycle. When L1
miss rate is high enough, the performance penalty on L2
access can outweigh the benefits of Hotline hits.

The v-v design has higher performance benefits: 1.9% for
CPU2000 and 3.7% for MediaBench applications on average,

I % Data Accesses mapped through Hotlines I Hotline hitrate

10Q T T T T T

80

20

mcf vpr equakeparserammpart jpeg mpeg rasta epic adpcm g721
(a)
Hl Hotline Hits @ TAG-Cache Hits 1 TAG-Cache Misses, L1 Hit
100 T T T T T T T T T T T

N
o

Types of L1 D-Cachéccesses (% of total

mcf vpr equakeparser ammpart

(c)

jpeg mpeg rasta epic adpcm g721

Relative L1 D—Cach&nergy Consumption (

TAG-Cache Hitrate (%)

[on Hotline Mispredictiond® on Dynamic Accesses ll Overall

@
o

(o2}
o

IS
o

N
o

mcf vpr equakeparserammp art
(b)

Hm Data Array Bl TAG-Cache [Hotlines + TAG Array

5 T T

jpeg mpeg rasta epic adpcm g721

mcf vpr equakeparserammp art

(d)

jpeg mpeg rasta epic adpcm g721

Figure 8: Baseline results

with maximum gain at 8%. The better figures for v-v are
because there are fewer TLB misses in v-v (TLB accessed
on L2 misses in v-v as against on L1 misses in v-r). For
v-v, the TLB is on the main memory access path, making
these accesses costlier by a cycle. An application with suffi-
ciently high L2 miss rate can get a degradation because of
this penalty (e.g. “art”).

Figure 9(a) shows the total energy savings, and how much
of this saving comes from the caches, the TLBs, and the
clock. Clock energy is directly proportional to chip-activity
and therefore as we reduce the activity by reducing cache
and TLB energy consumptions, clock dissipation also goes
down. Excellent energy savings are obtained, averaging 18%
for CPU2000 and 16% for MediaBench, in both v-r and v-v
designs.

The Energy-delay product is plotted in Figure 9(c). Due
to better performance gain in v-v compared to v-r, v-v has a
slight advantage in the energy-delay product: The product
is 80% for CPU2000 in v-v compared to 82% in v-r, and 80%
for MediaBench in both v-v and v-r designs.

7.2 Sensitvity Analysis
In this subsection, we evaluate the sensitivity of Cool-
Mem to various architectural and compiler parameters.

7.2.1 OptimisticVsConservativeHotlines

Figure 10 shows the Hotline hit rates for the two hotline
algorithms. The Conservative approach does improve the
hit rate for CPU2000 applications by 13% on average. The
Mediabench applications perform almost the same in both

cases. This is because these media applications have very
regular access patterns; there aren’t many irregular accesses
that the conservative approach can filter out.

A few of the applications which had low static hit rates
with the Optimistic technique don’t gain much from the
Conservative technique (e.g. “vpr”, “art”, “mpeg”). This
is because some of the affine array accesses hotlined by the
Conservative algorithm have very big strides, and therefore
should not be hotlined. But the compiler may be unable
to determine the stride at compile to decide whether or not
to hotline this access. An even more conservative approach
would be not to hotline even affine array accesses, when the
stride is not known at compile time.

7.2.2 Hotline Ragisterfile and TAG-Cadesizes

Figure 11(a) looks at static hit rate with increasing num-
ber of hotline registers. As expected, we see an improvement
in the hit rate with increasing number of hotline registers.
Saturation occurs around 16 registers, with minor improve-
ment going to 32 registers.

Figure 11(b) shows the TAG-Cache hit rates for different
sized TAG-Caches. The “epic” and “mpeg” benchmarks
see a big improvement when the TAG-Cache size increases
from 16 to 32 entries. For other applications, there is a very
gradual improvement with increasing TAG-Cache size, with
saturation occurring at a TAG-Cache size of 32 entries.

7.2.3 CadelineSize

Figure 12 shows the sensitivity of our results to increasing
L1 D-Cache line sizes. The static hit rate is seen to be

I Clock Energy Saving8ll TLB Energy Saving§&d Cache Energy Saving
25 T T T T T T T T T T T T

N
o

N
ol

Total Energy Savings (%)
=
o

o

mcf vpr equakeparserammp art

(a)

jpeg mpeg rasta epic adpcm g721

(2]

N

Performance Gain (%)
N

o

mcf vbr eqdakepa‘rserar‘nmp ért jpég mpég refsta ebic adbcm g‘721

(b)

,_\
S (2] o]
S <3 S S

Energy Delay Product (%)

N
o

vpr equakeparserammpart

(c)

jpeg mpeg rasta epic adpcm g721

Figure 9: Baseline Results

fairly sensitive to cache line size: As line size increases, the
Hotline hit-rate is also seen to increase. The Tag-Cache hit
rate also increases with increasing cache line size, as shown
in Figure 12. This is expected, because the likelihood of an
access mapping to a particular cache line increases as the
line size increases.

Figure 12 also shows the performance gain for v-r with
increasing line sizes. Most of the applications show im-
proved performance with bigger line sizes. This is because
these applications exhibit considerable spatial locality: the
L1 hit rate goes up when cache line size is increased from
32bytes to 512bytes. Another reason for the improved per-
formance is better Hotline and TAG-Cache hit rates with
bigger line sizes. Exceptions to the trend are “mcf”, “vpr”,
and “ammp”. These applications don’t show as much spa-
tially locality as the others: L1 miss rate goes up with in-

Il Optimistic Hotlines
100 T T T T

Il Conservative Hotlines
T T T T T

Hotlines Hitrate (%)

mcf vpr equake parser ammp art jpeg mpeg rasta epic adpcm @721

Figure 10: Varying levels of Speculation in the Cool-
Mem Compiler

4 8 16 32 64 Hotline registers

1

mcf vpr equakeparserammp art jpeg mpeg rasta epic adpcm g721
(a)

4 8 16, 32 64 entry TAG-Cache

101 T

TAG-Cache Hitrate (%)

mcf vpr equakeparserammp art jpeg mpeg rasta epic adpcm g721

(b)

Figure 11: Sensitivity to Hotline register-file and TAG-
Cache sizes

creasing line sizes, resulting in performance degradation.

Bigger lines causes more energy dissipation in the Data-
Arrays of caches, meaning that cache energy savings vanish
very quickly with increasing line size. This is the reason
for the general downward trend in energy savings. Such ap-
plications as “mcf” and “vpr”, suffer from higher L1 miss
rates with larger cache lines, as stated in the last paragraph.
They incur further energy penalty because of this, as L2 ac-
cesses consume more energy than L1 accesses, and thus the
sharp diminishing of energy savings for these applications.
We observe from the energy delay graph in Figure 12 that
a line size of 64bytes generally gives the best result.

32b 64b 128b 256b 512b cache line

\

10 T T T T

80

60|

Hotlines Hitrate (%)

o]
o

D
o

N
o

TAG-Cache Hitrate (%)
N
o

= N
ol o

=
o

Total Energy Savings (%)
o o

|
ol

N
o

=
(42

=
o

Performance Gain (%)
o (9]

Energy Delay Product (%)
P D
o o

N
o

o

mcf vpr equakeparserammp art jpeg mpeg rasta epic adpcm g721

Figure 12: Sensitivity to Cache Line Size

7.2.4 CadeSize

Figure 13 shows the percent of static hits, TAG-Cache
hits, L1 hits and L1 misses for three different cache sizes.
The static and TAG-Cache hit rate is seen to be almost in-
dependent of cache size. This is because the hotline registers

\
J]

W Hotline Hits @ TAG-Cache Hits 1 TAG—-Cache Misses, L1 Hit

N
o

4kb TSkB cac

©
(@]

D
o

N
o

N
(e}

Types of L1 D-Cachéccesses (% of total

o

mcf vpr equakeparserammp art

jpeg mpeg rasta epic adpcm g721

Figure 13: Hitrate sensitivity to Cache size

and the TAG-Cache entries store information for the most
recently used 32 cache blocks, and as long as the cache has
more than 32 blocks, the hit rates will stay the same.

I v-v with TLB M v-v with SW managed address

translatic
:

ol

o

Performance Gain (%)
1
[52]

1
[y
o

mcf vbr eqdakepérserahmpért jpég mﬁeg raéta ebic adbcm g‘721

Figure 14: v-v performance: with TLBs vs with soft-
ware managed address translation

7.2.5 TLBvsSoftwae ManagedAddressTranslation

Figure 14 shows the performance improvement for v-v
over the baseline, for two cases: (1) TLBs are present, and
(2) address translation is managed by software. We have
charged 20 cycles as the average time for software-based ad-
dress translation (which is reasonable, given that software-
based TLB miss handler was 20 cycles). Software-managed
address translation is more flexible than the TLB solution,
for example, problems associated with virtual addressing
can be effectively taken care of here. Even with software-
based address translation, performance is gained on all Me-
diaBench applications and half of the CPTU2000 applications.

8. CONCLUSION

This paper described Cool-Mem, a novel memory sys-
tem architecture based on tight integration between com-
piler and architecture, that combines conventional mem-
ory system mechanisms, selective address translation, with
compiler-enabled statically speculative memory accessing tech-
niques, to reduce energy consumption in general purpose
architectures. Cool-Mem achieves significant energy reduc-
tion in the processor, ranging from 11% to 20%, with perfor-
mance ranging from 1.2% degradation to 8% improvement,

by statically matching memory operations with energy-efficient
cache and virtual memory access mechanisms. Cool-Mem
makes several contributions: (1) it shows how to integrate
statically speculative mechanisms in general-purpose mem-
ory systems; (2) describes a practical compiler framework
where static speculation can be controlled with different
analysis and required architectural support; (3) successfully
designs architectural backup mechanisms to work together
with compiler-enabled ones; and (4) provides architectural
support for selective address translation including support
in static access paths.

9. REFERENCES _
[1] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a

framework for architectural-level power analysis and
optimizations. In Proceedings of the 27th International
Symposium on Computer Architecture (ISCA ’00),
June 2000.

[2] D. C. Burger and T. M. Austin. The SimpleScalar
Tool Set, Version 2.0. Technical Report
CS-TR-1997-1342, 1997.

[3] J. S. Chase, H. M. Levy, E. D. Lazowska, and
M. Baker-Harvey. Lightweight Shared Objects in a
64-bit Operating System. Technical Report 92-03-09,
University of Washington, March 1992.

[4] J. B. Chen, A. Borg, and N. P. Jouppi. A
Simulation-based Study of TLB Performance. In
Proceedings of the 19th International Symposium on
Computer Architecture (ISCA ’92), May 1992.

[5] R. Cheng. Virtual Address Cache in Unix. In
Proceedings of the 1987 Summer Useniz Conference,
pages 217-224, 1987.

[6] C. Corporation. Alpha 21164 Microprocessor:
Hardware Reference Manual. Digital Semiconductor,
April 1995.

[7] J. Cortadella and J. M. Llaberia. Evaluation of
A+B=T condition without carry propogation. IEEFE
Transactions on Computers, November 1992.

[8] J. R. Goodman. Coherency for Multiprocessor Virtual
Address Caches. In Proceedings of the 2nd
International Conference on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS ’87), October 1987.

[9] M. K. Gowan, L. L. Biro, and D. B. Jackson. Power
Considerations in the Design of the Alpha 21264
Microprocessor. In Proceedings of the 35th Design
Automation Conference (DAC ’98), 1998.

[10] M. Huang, J. Renau, S.-M. Yoo, and J. Torrellas. L1
Data Cache Decomposition for Energy Efficiency. In
Proceedings of the International Symposium on
Low-Power Electronics and Design (ISPLED ’01),
August 2001.

[11] K. Inoue, T. Ishihara, and K. Murakami.
Way-Predicting Set-Associative Cache for High
Performance and Low Energy Consumption. In
Proceedings of the International Symposium on
Low-Power Electronic Design (ISPLED ’99), August
1999.

[12] A. Iyer and D. Marculescu. Power Aware
Microarchitecture Resource Scaling. In Proceedings of
the IEEE Design, Automation and Test in Europe
(DATE), March 2001.

[13] B. L. Jacob and T. N. Mudge. Software-Managed
Address Translation. In Proceedings of the 8rd
International Symposium on High Performance
Computer Architecture (HPCA ’97), February 1997.

[14] B. L. Jacob and T. N. Mudge. Uniprocessor Virtual
Memory without TLBs. In IEEE Transactions on
Computers. IEEE Press, May 2001.

[15] T. Juan, T. Lang, and J. J. Navarro. Reducing TLB

[16]

[17]

18]

[19]

[20]

(21]

(22]

(23]

[24]

[25]

[26]
27]
28]

[29]

(30]

31]

32]

power Requirements. In Proceedings of the
International Symposium on Low Power Electronics
and Design (ISPLED ’97), August 1997.

J. Kin, M. Gupta, and W. M. Smith. The Filter
Cache: An Energy Efficient Memory structure . In
Proceedings of the 30th Annual Symposium on
Microarchitecture (MICRO ’97). IEEE Press,
December 1997.

C. Lee, M. Potkonjak, and W. H. Mangione-Smith.
MediaBench: A Tool for Evaluating and Synthesizing
Multimedia and Communication Systems. In
Proceedings of the 30th Annual Symposium on
Microarchitecture (MICRO ’97). IEEE Press, 1997.
A. Ma, M. Zhang, and K. Asanovic. Way Memoization
to Reduce Fetch Energy in Instruction Caches. In
Workshop on Complexity Effective Design, 28th
International Symposium on Computer Architecture
(ISCA °01), July 2001.

J. Montanaro. A 160-MHz, 32-b, 0.5-W CMOS RISC
Microprocessor. In Digital Technical Journal, vol. 9,
Digital Equipment Corporation, 1997.

C. A. Moritz, M. Frank, and S. Amarasinghe.
FlexCache: A Framework for Compiler Generated
Data Caching. In Lecture Notes in Computer Science.
Springer Verlag, 2001.

C. A. Moritz, M. Frank, W. Lee, and S. Amarasinghe.
Hot Pages: Software Caching for Raw
Microprocessors. In MIT-LCS Technical Memo
LCS-TM-599, Aug 1999.

D. A. Patterson and J. L. Hennessy. Computer
Architecture: A Quantitative Approach. Morgan
Kaufmann, San Mateo, CA, 1990.

M. D. Powell, A. Agarwal, T. N. Vijaykumar,

B. Falsafi, and K. Roy. Reducing Set-Associative
Cache Energy via Way-Prediction and Selective
Direct-Mapping. In 84th Annual Symposium on
Microarchitecture (MICRO ’01). IEEE Press,
December 2001 (To Appear).

G. Reinman and N. Jouppi. An Integrated Cache
Timing and Power Model. Compaqg WRL Report,
1999.

S. Sair and M. Charney. Memory Behaviour of the
SPEC2000 Benchmark Suite. IBM T. J. Watson
Research Center Technical Report, 2000.

A. J. Smith. Cache Memories. In Computing Surveys,
14(8), pages 473-530, September 1982.

The standard performance evaluation corporation. In
http://www.spec.org, 2000.

O. S. Unsal, R. Ashok, I. Koren, C. M. Krishna, and
C. A. Moritz. Cool-Cache for Hot Multimedia. In 84th
Annual Symposium on Microarchitecture (MICRO
’01). IEEE Press, December 2001 (To Appear).
W.-H. Wang, J.-L. Baer, and H. M. Levy.
Organization and Performance of a Two-Level
Virtual-Real Cache Hierarchy. In Proceedings of the
16th International Symposium on Computer
Architecture (ISCA ’89), June 1989.

E. Witchel, S. Larsen, C. S. Ananian, and

K. Asanovic. Direct Addressed Caches for Reduced
Power Consumption. In &/th Annual Symposium on
Microarchitecture (MICRO ’01). IEEE Press,
December 2001 (To Appear).

D. A. Wood, S. J. Eggers, G. Gibson, M. D. Hill,

J. M. Pendleton, S. A. Ritchie, G. S. Taylor, R. H.
Katz, and D. A. Patterson. An In-Cache Address
Translation Mechanism. In Proceedings of the 13th
International Symposium on Computer Architecture
(ISCA ’86), January 1986.

M. Zhang and K. Asanovic. Highly-Associative Caches
for Low-Power Processors. In Kool Chips Workshop,
38rd Annual Symposium on Microarchitecture
(MICRO ’00), December 2000.

