Energy Characterization of Hardware-Based Data Prefetching

Yao Gud, Saurabh Chhedalsrael Koref, C. Mani Krishn&, and Csaba Andras Moritz

1Electrical and Computer Engineering, University of Massachusetts, Amherst, MA 01003
2BlueRISC Inc., Hadley, MA 01035

Abstract « Dependence-based prefetchinghich is designed to prefetch
on pointer-intensive programs containing linked data structures
where no constant strides can be found.

A new combined stride and dependence-based approach.

This paper evaluates several hardware-based data prefetching
techniques from an energy perspective, and explores their en-
ergy/performance tradeoffs. We present detailed simulation results’
and make performance and energy comparisons between differeril this paper we consider 100-nm technologies: this is representa-
configurations. Power characterization is provided based on HSpiée of such next generation process technologies. We present detailed
circuit-level simulation of state-of-the-art low-power cache desigriimulation results on each prefetching technique and show perfor-
implemented in deep-submicron process technology. This is cdWance and energy comparisons. We modify the SimpleScalar [4]
bined with architecture-level simulation of switching activities in théimulation tool to implement the different prefetching techniques and
memory system. The results show that while aggressive prefetcHig§ect statistics on performance as well as switching activity in mem-
techniques often help to improve performance, they increase ene@jy systems. To estimate power consumption in the memory systems,
consumption in most of the cases. In designs implemented in de&g-use state-of-the-art low-power cache circuits and simulate them
submicron 100-nm BPTM process technology, cache leakage becoHf@89 HSpice.

one of the dominant factors of the energy consumption. We haveAs expected, the results show that while aggressive prefetching
however, found that if leakage is optimized with recently-proposégchnigues often help to improve performance, in most of the applica-
circuit-level techniques, most of the energy degradation is due @ns, they increase energy consumption by as much as 20%. In many
prefetch-hardware related costs and unnecessary L1 data cackstems [7], [10], this constitutes more than 10% increase in chip-
lookups related to prefetches that hit in the L1 cache. This overhewgile energy consumption. In designs implemented in deep-submicron

on the memory system can be as much as 20%. 100-nm BPTM process technology, cache leakage dominates the
_ energy consumption. We have, however, found that if cache leakage is
1. Introduction optimized with recently-proposed circuit-level techniques, most of the

Prefetching has been proposed as a successful technique to ftijremaining energy degradation is due to prefetch hardware related
memory latencies. Although considerable research has been focu@2%f and unnecessary L1 data cache lookups related to prefetches
on improving the performance of prefetching mechanisms, the iffit hit in the L1 cache. When the energy cost of off-chip accesses
pact of such prefetching techniques on processor energy efficiefitycreased to more pessimistic levels (e.g., due to very large load
remains unclear. In this paper, we present energy characterizafigpacitances d_rl_/en during off-chip accesses), the other energy effects
of several hardware-based data prefetching techniques. Our purgd&gPme less visible.
is to analyze the current and potential energy-related issues of datdne rest of this paper is structured as follows. Section 2 presents a
prefetching mechanisms and to motivate new development of ener§{i€f introduction of the prefetching techniques we study in this paper.
aware data prefetching techniques. The power estimation of memory system aspects and experimental

Both hardware [15], [3], [13], [14], [6] and software [11], [8], framework is presented in Section 3. Section 4 gives a detailed
[9] techniques have been proposed for prefetching in recent yeé{:}galyas of the experimental results. We conclude with Section 5.
Software prefetching is implemented by inserting explicit prefetch
instructions into the executable code. Although there are no hardware Hardware-based Data Prefetching
requirements for software prefetching (prefetching instructions are . .
supported by most contemporary microprocessors), the compiler p?ol' Sequential Prefetching
cess of inserting and scheduling prefetches is complicated. HardwareSequential prefetchingchemes are based on fhae Block Looka-
based approaches are simpler since they do not require modificaieiad (OBL) approach, which initiates a prefetch for blogkl when
to executables. Although hardware prefetching requires extra prefettbck b is accessed. OBL implementations differ based on what type
hardware in a processor, such additional hardware requirements @@ccess to block initiates the prefetch ob+1. We will evaluate
typically small. two of the sequential approaches discussed by Smith [p&fetch-

This paper evaluates several state-of-the-art hardware-based @ataniss sequentiaindtagged prefetching
prefetching techniques from an energy perspective, and explores theiThe prefetch-on-miss sequential algorithm simply initiates a pre-
energy/performance tradeoffs. The prefetching techniques studiggth for block b+1 whenever an access for blotkresults in a
include: cache miss. Ib+1 is already cached, no memory access is initiated.

« Two sequential prefetching (One Block Lookahead, OBL) apFhe tagged prefetching algorithm associates a bit with every cache

proaches - a simplsequential prefetchingprefetch-on-miss) line. This bit is used to detect when a line is demand-fetched or a
andtagged sequential prefetching prefetched block is referenced for the first time. In both cases, the

« Stride prefetching focusing on array-like structures, catchesiext sequential block is prefetched.

constant strides in memory accesses and prefetching using th©BL prefetching schemes are not as efficient as more recent
stride information; schemes but they require relatively simple hardware. An OBL scheme

was implemented in the HP PA7200 [5] which uses a modified ver- . .
Table 1: Baseline parameters

sion of tagged prefetching scheme and shows significant performanc
improvement for some benchmarks. Processor speed 1GHz
Issue 4-way, out-of-order

2.2. Stride Prefetching L1 D-cache 32KB, CAM-tag, 32-way, 32bytes cache

Stride prefetching3] monitors memory access patterns in the pro- line .
cessor to detect constant-stride array references originating from loo L1 I-cache 32KB, 2-way, 32bytes cache line
structures. This is normally accomplished by comparing successive L1 cache Jatency 1 cycle

: - . L2 cache unified, 256KB, 4-way, 64bytes cache lirje

add_resses L_Jsed by memory |nstfuct|0ns. _ L2 cache latency| 12 cycle

Since stride prefetching requires the previous address used b Memory latency | 100 cycles latency + 10 cyclesiword

a memory instruction to be stored along with the last detected
stride, a hardware table (called tReference Prediction Tahl&PT)

is added to hold the information for only the most recently used)
load instructions. Each RPT entry contains the address of the load Table 2: Prefetching hardware parameters
instruction, the address of this instruction as accessed previously, [aPrefetching Schem¢ Hardware required

stride value for those entries that have established a stride, and a stat&equential none _
field used to control the actual prefetching. Tagged 1 bit per cache line
Stride prefetching is more selective than sequential prefetching Stride A 64-entry RPT

since prefetch commands are issued only when a matching stride jsDependence A 64-entry PPW and a 64-entry CT
detected. It is also more effective when array structures are accessed-°mpined All three tables above

through loops. However, stride prefetching uses a hardware table

which normally contains 64 entries; each entry contains around 64

bits. This hardware table is accessed whenever a load instructioris Experimental Assumptions

detected.

3.1. Experimental Framework

2.3. Pointer Prefetching We implement the hardware-based data prefetching techniques by

~ Stride prefetching has been shown to be effective for arrayodifying the SimpleScalar [4] simulator. The parameters we used
intensive scientific programs. However, for general-purpose programss simulation are listed in Table 1.

which are pointer-intensive, or contain a large number of dynamic The hardware requirements for the prefetching schemes are shown
data structures, no constant strides can be easily found that canpeaple 2. For the three schemes that require hardware-based history
used for effective prefetching. tables, each entry of the hardware tables contains two 32 bits address

One scheme for hardware-based prefetching on pointer structure§y,e and some extra bits. For simplicity, we assume each entry has
calleddependence-based prefetchimgproposed by Roth et al. [13]. roughly the same size of 64 bits.

Like stride prefetching, this scheme uses hardware tables to recorgy, randomly select a total of ten benchmark applications, five

the most recently executed load instruction. The difference is that thi§, sSPEC2000 and five from Olden. The SPEC2000 benchmarks [1]
table is used to detect dependencies between load instructions rajer mostly array-based data structures, while the Olden benchmark
than establishing reference patterns for single instructions. suite [12] contains pointer-intensive programs that make substantial
Dependence-based prefetching requires the help of two hardwgaie of |inked data structures. For SPEC2000 benchmarks, we fast
tables. The Correlation Table (CT) is the component responsible {8f,arg the first one billion instructions and then simulate the next

storing dependence information. Each correlation represents a depgily million instructions. The Olden benchmarks are simulated to
dence between a load instruction that produces an address (prOdUE&’ﬂPletion since they are relatively short.

and a subsequent load that uses that address (consumer). The Potentia
Producer Window (PPW) records the most recent loaded values @)2. Energy Evaluation
the corresponding instructions. When a load commits, its base addre he memory system, including caches, consumes a significant

value is checked again§t the entr_ies _in the PPW, with a correlatiﬂgction of total processor power. For example, the caches and
created on a match.. This corrglatlon Is added to.the CT. . ranslation look-aside buffers (TLB) together consume 23% of the

PPW and CT typically con5|§t of 64-128 entries containing a(iétal power in the Alpha 21264 [7], and the caches alone use 42% of
d_resses and program co_unters, each_entry may °°_”‘a'” 64 or MR power in the StrongARM 110 [10]. In this paper, we will focus on
blt_s. The hardyvare cost is around twice that for stride prefetchi e memory system power consumption. The L1 and L2 caches, off-
Th_|s sc_heme_ improves performance on many of the Olden [1 ip memory accesses and prefetching hardware tables could amount
pointer-intensive benchmarks. to about half of the total processor energy consumption.

2.4. Combined Stride and Pointer Prefetching Prefetching schemes affect the energy efficiency of a processor in

One contribution of this paper is a combined stride and point@number of ways. For example, unnecessary cache lookups and bus
prefetching techniques. Our objective is to evaluate a technique tR&Fesses due to redundant prefetching can severely increase energy
is beneficial for applications containing both array and pointer base@nsumption in the memory system. The most important energy
accesses. consumption issues introduced by hardware prefetching include:

We will show that the combined technique performs consistently 1) Energy cost of prefetch hardwar®lost of the hardware tech-
better than the individual techniques on two benchmark suites with niques require extra hardware such as address history tables to
different characteristics. However, the hardware cost of this approach record the recent memory access patterns that are used to make
is higher since we need the hardware tables from both stride and prefetching decisions. The hardware tables, although typically
dependence-based prefetching. much smaller compared to caches, are significant sources of

energy consumption since they are normally accessed whene| _ oz i e ence B oo dep
a memory access (normally load) occurs.

2) Extra tag lookups for the L1 Cach&Vhenever a prefetch
command is initiated, the first thing the prefetch engine does
to check whether the data to be prefetched is in the L1 Cacl
Although most of the time the prefetch attempts can be resolv
in the L1 Cache, tag lookups still cost significant power. °mef parss art bap2 gagel bh

3) Extra memory accesses to L2 CachBsis is where most of the
actual prefetching happens, i.e., bring the data to the L1-Cac

02

01

0.05

Missrate for L1 Data Cache

em3d health mst perim

(@)

from L2 before it is accessed. 2] ‘S;?’iz;efemh :Z‘:?)‘;igi:'ce E:ﬁiﬁ .
4) Extra off-chip memory accesseSlthough most prefetch com- 5

mands resolve in the L2 Caches, even the most conser| g 18

tive prefetching schemes issue unnecessary off-chip mem E‘ii -

prefetches, which result in a slight increase in the traffic 1| 1, r

off-chip main memory. As we will show later, the increase i 1%ﬂ ﬂﬁ]}

normally less than 1%. 08 et parser art bzip2 galgd bh em3d heath mst perim

To accurately estimate power and energy consumption in L1 a ®

L2 caches, we perform circuit-level simulations using HSpice. W
base our design on a recently proposed low-power circuit [17] tt
we implemented in 100-nm BPTM (Berkeley Predictive Technoloc
Model) technology. Our L1 cache includes the following low-powe

features: low-swing bitlines, local word-line, CAM-based tags, sep If an L1 miss occurs, energy is consumed not only in L1 tag-
rate search lines, and a banked architecture. The L2 cache we e"allookups but also whenlwriting the requested data back to L1. L2

is based on a banked RAM-tag design. accesses are similar, except that an L2 miss goes to off-chip main
As we expect that implementations in 100-nm technology Woumemory. Such an off-chip access consumes a significant amount
have significant leakage, we apply a recently proposed circuit-le\of processor power. Rather than picking a single design-point, we
leakage reduction technique called asymmetric SRAM cells [2]. Ttchoose a range of energy costs ranging from optimistic to pessimistic.
is necessary because otherwise our conclusions would be skeye express the L2 miss energy as a function of L1 hit energy. We
due to very high leakage power. Tepeed enhanced cetl [2] has a5sume that an L2 cache miss consumes 32X to 512X single-word
been shown to reduce L1 data cache leakage by 3.8X for SPEC2eaqd energy of our L1 cache. A similar assumption has been made
benchmarks with no impact on performance. For L2 caches, we 4y§g17]. The actual power consumed depends on how many bits are
the leakage enhanced celthich increases the read time for 5%, but, transition and on the actual implementation/packaging choices.
it can reduce leakage power by at least 6X and by about 40X in thegach prefetching history table is implemented as a 64 fully-
preferred state. In our evaluation, we assume speed-enhanced Ggll$ciated CAM-array. The power consumption for each lookup or
for L1 and leakage enhanced cells for L2 data caches, by applyigdate to the table is roughly 7.3mW based on HSpice simulation.
the different asymmetric cell techniques respectively. The leakage energy of these hardware tables will not be accounted

The power consumption for our L1 and L2 caches are shown jjecause they are very small (512B) compared to L1 and L2 caches.
Table 3.

Figure 1. Performance speedup for different prefetching schemes: (a)
DL1 miss rate reduction; (b) IPC speedup.

4. Results and Analysis

) . . 4.1. Performance Speedup
Table 3: Cache configuration and power consumption

[Parameter | 1 [L2 | Performance speedup is the original, and still the primary goal,
size 30KB 256KB of prefetching. Figure 1 shows the performance results of different
tag array CAM-based | RAM-based prefetching schemes. The first five benchmarks are array-intensive
associativity 32-way 4-way SPEC2000 benchmarks, and the last five are pointer-intensive Olden
bank size 2KB 4KB benchmarks. Figure 1(a) shows the reduction of DL1 miss-rate, and
of banks 16 64 Figure 1(b) shows actual speedup based on simulated execution time.
cache line 32B 64B As expected, the dependence-based approach does not work well

[Power (mW) [[] on the five SPEC2000 benchmarks since pointers and linked data
P_tag 6.5 6.27 structures are not used frequently. But it still gets marginal speedup
P_read 95 100.52 on three benchmarkpdrseris the best with almost 5%).

P_write 10.3 118.62 Tagged prefetching (10%) does slightly better on SPEC2000
P_leakage 31 23.0 benchmarks than the simplest sequential approach, which achieves
P_reducedeakage| 0.82 1.53 an average speedup of 5%. Stride prefetching yields up to 124%

speedup (foart), averaging just over 25%. Combined prefetching is
the best, but gives on the average only about 1.5% speedup compared
In a CAM-based cache (such as the L1 assumed in this paperpahe stride approach. The comparison between miss rate reduction
CAM access and a data-array access are performed for each casHegure 1(a) and speedup in Figure 1(b) matches our intuition that
access. In a Ram-tag cache (such as the L2 assumed in this pafesver cache misses means greater speedup.
multiple tag accesses and data-array accesses need to be completéd; for the five Olden pointer-intensive benchmarks in Figure 1, the
depending on associativity, for every access. dependence-based approach eliminates about half of all the L1 cache

§ 2]—{D no-prefetch @ sequential 0 taggedd stride M dependenced stride+de| 2
. [) - O Pref-hit
< 3)
216 s 5 & B Pref-miss
S v 184——"J+H— 1 € °
814 S 2 2E8ehd @ Regular
- @ S g S
312 Q | zbrB0B -
3 S 16l T i
N1 oo
g Ll :
08 1
2 mcf parser art bzip2 galgel bh em3d health mst perim 3 _ L

@ 0 144

S

o 1B 4@ no-prefetch @ sequential O taggedO stride B dependenced stride+dep e
Q17 e
¢ 16 8 124
15 @ | M
214 [E]
813]
CEPN |]] Z 14
811 —
31
E 0.9 0.8
508 mcf parser art bzip2 galgel bh em3d health mst perim mcf parser art bzip2 galgel bh em3d health mst perim

(b)

[{@no-prfetch M sequential Otagged Dstide M cependence stiderder} Figure 3: Breakdown of L1 Accesses, all numbers normalized to L1 cache
accesses of baseline with no prefetching.

PR E P e

o © P kN oW s >

Sequential prefetching techniques (both prefetch-on-miss and
tagged schemes) show completely different behavior as they increase
the L1 access for only about 7% while resulting in a more than
30% average increase on £2L1 traffic. The explanation for this
is that sequential prefetching always tries to prefetch the next cache
Figure 2: Memory traffic increase for different prefetching schemes. (line which has a much greater chance to miss in L1. Main memory
Number of accesses to L1 data cache, including extra cache-tag look accesses are largely unaffected in the last three techniques, and only
to Ll;_(b) Number of accesses to L2 data cache; (c) Number of accesjncrease by 5-7% for sequential prefetching.
to main memory. As L1 accesses increase significantly for the three most effective

techniques, we break down the number of L1 accesses into three

))) arts: regular L1 accesses, L1 prefetch misses and L1 prefetch hits,
misses and achieves an average speedup of 27%. Stride prgfethHwNn in Figure 3. The L1 prefetch misses are those prefetching
(14%) does syrpr|§|ngly yvell on this set of b‘?“chm?f,ks and 'mp“?équests that go to L2 and actually bring cache lines from L2 to L1.
th&_lt even pointer-intensive programs conta_un significant con_sta ile the L1 prefetch hits stand for those prefetching requests that
stride memory access sequences. The combined approach achievi a9 11 and no real prefetching occurs.
average of 40% performance speedup on the five Olden benchmark1$zrom Figure 3, we can see that L1 prefetching hits account

In summary, for array-intensive programs, stride prefetching dogs 11\ot of the increases in L1 accesses. On average, 70-80% of
reasonably well and dependence-based pointer prefetching is not V@iyne jncreases come from extra L1 prefetching hits, which may
effective. However, for pointer-intensive programs, both stride ands, ¢ in significant energy overhead, while being almost useless for
dependence-b_ased approaches do sufficiently well. The combi _ee(hormance speedup. The extra L1 accesses will obviously translate
approach achieves the best performance speedup due to prefethmg'unnecessary energy consumption.

In general, the combined technique is useful for general purpose
programs which contain both array and pointer structures. 4.3. Energy Consumption
) We use the power numbers shown in Section 3 to calculate the
4.2. Memory Traffic Increase :
energy consumption.

Memory traffic is increased because not all the data we prefetch
from the next level are useful (i.e., not all they are actually useh3-1. Cache energy consumption
by a later access before they are replaced from the cache). IrFigure 4 shows the dynamic energy consumption for L1 and L2
most cases, some useless data is prefetched into the higher leaehes and prefetching tables. For most of the benchmarks, the L1
of the memory hierarchy; these are a major source of power/enedpnamic energy (excluding prefetching overhead) is not affected
consumption added by the prefetching schemes. Apart from memaignificantly. The L2 dynamic energy is increased in proportion to the
traffic increases, power is also consumed when we attempt to prefetéhmemory traffic increase shown in Figure 2(b). Prefetching related
the data that already exists in the higher level cache. In this case, émergy overhead on L1 cache is quite small for sequential prefetching,
attempt to locate the data (e.g., cache-tag lookups) consumes powetr.more significant for the other three prefetching approaches. This

Figure 2 shows the number of accesses going to different levelspart of the energy overhead is proportional to the prefetch-related L1
the memory hierarchy. The numbers are normalized to the baselawzess increase shown in Figure 3.
with no prefetching. On average, the number of accesses to L1 DEnergy consumption for the hardware tables are very significant
cache increases almost 40% with the most aggressive prefetchiogall the three prefetching techniques using hardware tables. On
scheme. However, the accesses to L2 only increase by 8% for gwerage, the hardware tables consume almost the same amount of
same scheme, showing that most of the L1 cache accesses are endrgy as regular L1 caches accesses for the combined prefetching.
cache-tag lookups trying to prefetch data already present in L1. Typically this portion of energy accounts for 60-70% of all the

Normalized Main Memory Accesses

o o

mcf parser art bzip2 galgel bh em3d health mst perim
©

25 ~ 3
5w g & O Pref-Tab 'E) O Pref-Tab
T= 2 o W L1-Pref
E 2 %% B % M " L1-Pref % 25 't_* Sz % 8 I —i[f_f O L2-Leak
2 2 $EE585 OL2-Dyn £ M 125552 -
E _ i £ 283 t3 OL2-Dyn
§ I BL1-Dyn 3 285585
g 3 M | ®L1-Leak
€ =} ~
3 15) '“ 3 J / R
S N x 4 1 [
© 11U £ 15
) 4 i E
2 1 Al - s
o ‘i 1] - g 14
E — TTH £ Nt
o M . S e %] -_
2 05 - IHH o | | s 5
a 8§ o051
>
j=2}
9]
0 g o
mcf parser art bzip2 galgel bh em3d health mst perim mcf parser art bzip2 galgel bh em3d health mst perim

Figure 4: Total cache energy consumption without considering leaka Figure 6: Total cache energy consumption with leakage reduction tech-

energy. nigues applied.
1. O Pref-Tab overhead shown in Figure 4 has been significantly reduced after the
N - B L1-Pref leakage energy is taken into account.
E i N A |©Le-Leak With no leakage optimization, sequential prefetching saves on
EM N 1|~ |oL2-Dyn average about 10% of the total energy, stride prefetching about 17%
s 2 A ™ M| |mL1-Leak and the combined approach results in almost 24% energy savings.
i é%g §% - @ L1-Dyn The results show that prefetching schemes which have a better
£ 109 3282 %% n performance speedup also save energy when leakage energy increases
° z (§-|— [oNa¥/]
T s L to a certain level in deep sub-micron technologies.
2 6 \\ \ // However, leakage energy could be reduced significantly by tech-
§ \\‘ // nigues such as asymmetric SRAM cells [2]. Figure 6 shows the total
3 ¢ L \'SW* cache energy after applying the above leakage reduction techniques.
8 2 i The dynamic hit energy dominates some of the benchmarks with
&

=

Hlmj higher IPC; however, the leakage energy still dominates in some
° bzip2 galge bh em3d health mst perim programs, such aart, which have a higher L1 miss rate and thus a
longer running time. Although both L1 and L2 cache access energy
are significantly increased due to prefetching, the static (leakage)
%%ergy reduction due to performance speedup can compensate for at
least some portion of the increase in dynamic energy consumption.
The results in Figure 6 show that on average, the prefetching
schemes still cause relatively significant energy consumption over-
Nfead when leakage consumption is reduced to a reasonable level.
average increase of the combined approach is more than 26%,
Ahd about 11% increase for stride prefetching.

mcf parser art

Figure 5: Total cache energy consumption with unoptimized leaka
energy accounted.

dynamic energy overhead that result from combined prefetchi
The reason is that prefetch tables are frequently looked up and
also highly associative. Their energy consumption is similar to a t
lookup in a highly optimized banked low power cache.
For the most aggressive combined prefetching approach, the o Energy cost for off-chip accesses

prefetching energy overhead almost doubles the total dynamic energy

(baseline with no prefetching) for some applications (sucimekand 10 estimate the energy consumption within the processor for
em3d, and is 76% on the average. For the other prefetching tecfiving off-chip memory accesses, we use similar assumptions as
niques, there is a 25% increase for sequential prefetching, and adBud 71 We assume that an L2 cache miss consumes 32-512X single-
38% for both stride and dependence schemes. This shows that wiiRfd read energy of the L1 D-cache. Our results, including energy
complicated prefetching algorithms can achieve greater speedug)sumption for both caches and off-chip memory access related

they can significantly increase the overall energy consumption. POWer, are shown in Figure 7.
Figure 7(a) shows the situation where L2 miss energy cost is 32X

Figure 5 shows the total cache energy consumption with leakaglL1 hit energy. The prefetching energy overhead is quite significant
energy also accounted. Leakage energy is proportional to progréon many applications, averaging 7% for sequential prefetching, 8%
runtime and thus decreases linearly with speedup: higher speefmpstride prefetching and more than 20% for the combined approach.
will reduce the leakage energy consumption. When the off-chip memory costs goes up to 128X, as shown in

In this figure, the total energy consumption for caches is dominatétjure 7(b) the prefetching overhead stays at 7% for sequential tech-
by L2 leakage because of the large size (256KB) of the L2 cacheques, but drops to almost half for the last three schemes, averaging
As we can see, for most of the applications, the relative prefetchiagout 11% for combined prefetching. If the off-chip memory costs

| Memor Wy [@ no-prefetch M sequential O tagged
5 5 = g & g pref-Td | Ostride W dependence O stride+dep
5 g4l %gg v% O L2-Leak g 12 ¥
£ g25828 OL2-Dy S ol i 1
> 34 SEE58 5 BL- % 0 e]
2 2 117 3
o 1 Qo 06 H H
o OO 1 [& 0.2 - -
mcf parser art bzip2 galgel bh em3d heath mst perim o
- - mcf parser art bzip2 galgel bh em3d health mst perim
(a) Total memory systems energy when L2 miss energy expressed as 32X L1 hit energy
(@)
15 @ memory -
- 5w 8g h 14 1= no-prefetch M sequential O tagged
) TS 5a ocache ~ | O stride B dependence O stride+dep
£ 10 B §§% 5@ 5 12 —
o = = T 1]]
3 SEE5E5 g
5 5 § 08 H —
[= @
w ® 06 H
o
0 I e a n 0 =04 H
mcf parser art i h em3d health mst perim ° 02 |
so
(b) Total memory systems energy when L2 miss energy expressed as 128X L1 hit energy 0 - -
mcf parser art bzip2 galgel bh em3d health mst perim

B memory (b)
mcache

Figure 8: Energy-delay product for different prefetching techniques. (1)
Energy-delay product; (2) Energy-defayroduct. In both figures, we
assume that the leakage reduction techniques are applied and the off-

,,,,,,,,,,,,, chip memory energy cost is 82L1 hit energy.
bzip2 galgel bh

(c) Total memory systems energy when L2 miss energy expressed as 512X L1 hit energy

NoPrefetch
Sequential
| | Tagged

— Stride

— Dependence
[Stride+Dep

Energy (mJ)
3

mcf parser art

Clearly, for low-power processors, choosing the correct prefetching

Figure 7: Total energy consumption for memory systems with varying ltechnique with good speedup and less energy overhead will be
miss energy cost. very important. New power-aware prefetching techniques are needed
to reduce the energy overhead without decreasing the performance

. N - benefits of data prefetching.
were to increase to a pessimistic 512X as shown in Figure 7(c), 1

energy overhead of prefetching drops to less than 5%. References
[1] SPEC2000 benchmarks, http://www.spec.org.
4.3.3. Energy-delay product [2] N. Azizi, A. Moshovos, and F. N. Najm. Low-leakage asymmetric-cell

Finally, we show in Figure 8 the energy-delay and energy-delay _ S@m. INISLPED'0Z pages 48-51, 2002.

duct lized to the b i fetchi ina th Es] J. L. Baer and T. F. Chen. An effictive on-chip preloading scheme to
pro uc normq Ized 1o e. aseline (n(? prefetching) using the assump- reduce data access penalty. Snpercomputing 199pages 179-186.
tion that L2 miss energy is 32X L1 hit energy. 4

] D. Burger and T. Austin. The simplescalar tool set, version 2.0. Technical
In most cases, we note that both energy-delay and energy?delay Report CS-TR-1997-1342, Univ. of Wisc., Madison, June 1997.
products improve with effective prefetching techniques that achiev®] K- K. Chan, C. C. Hay, J. R. Keller, G. P. Kurpanek, F. X. Schumacher,

and J. Zheng. Design of the HP PA 7200 CPéwlett-Packard Journal
a large enough performance speedup. The energy-delay product 47(1):25-33, Feb. 1996.

improves by more than 20% for the combined prefetching, while thes] R. Cooksey, S. Jourdan, and D. Grunwald. A stateless content-directed
energy-delay improves by almost 35%. This is important since by ~ data prefetching mechanism. ASPLOS-Xpages 279-290, 2002.
choosing a design point with lower voltage, this could be converteff] M. K. Gowan, L. L. Biro, and D. B. Jackson. Power considerations in

into energy efficiency. Nevertheless, we believe that more energy- tchgn?eefe'r?ge?é,fgf9""8'{;23ezslggg_%cfoﬂ’ﬁceeizggm'g” Automation

focuse_d prefetching a'lg'orithms and architectures should be develop[:gjl M. H. Lipasti, W. J. Schmidt, S. R. Kunkel, and R. R. Roediger. Spaid:
to achieve energy efficiency even at unchanged voltage levels. software prefetching in pointer- and call-intensive environments. In
According to this figure, extra energy cost by complicated prefetch- — Micro-28, pages 231-236, 1995.

; ; ; F ot C.-K. Luk and T. C. Mowry. Compiler-based prefetching for recursive
ing techniques are worthwhile for some applications such as t data structures. IASPLOS-VI pages 222-233, 1996

combined prefetching approach amcf andem3d [10] J. Montanaro and et. al. A 160-MHz, 32-b, 0.5-W CMOS RISC
. microprocessorDigital Technical Journal 9(1), 1997.
5. Conclusion [11] T. Mowry. Tolerating Latency Through Software Controlled Data

. . L Prefetching PhD thesis, Dept. of CS, Stanford Univ., Mar. 1994.

This paper studies the energy consumption Issues related to 4aq A, Rogers, M. C. Carlisle, J. H. Reppy, and L. J. Hendren. Supporting
prefetching. In deep-submicron process technologies, memory system dynamic data structures on distributed-memory machid&M Trans.
energy is dominated by the leakage component unless effectigL/eJ) on Prorg];ramminghLanguaggsGang SSYS;?mE(Z)12?é3—263BMaE 199fS- .

; ; ; ; A. Roth, A. Moshovos, an . S. Sohi. Dependence based prefetching
:jeakage re|dU(l:<t|0n technlqugus are qsed. AS. featurg Slzfes qontlnfu t for linked data structures. IASPLOS-8pages 115-126, Nov. 1998.
ecrease, leakage power Wi Cf)nSt'tUte an. IncreaSIng. raction 9 tﬁﬁ] A. Roth and G. S. Sohi. Effective jump-pointer prefetching for linked
total energy consumption, favoring aggressive prefetching techniques. data structures. I18CA-26 pages 111-121, 1999.
However, with successful leakage control, the problem shifts bafis] A. J. Smith. Sequential program prefetching in memory bierarchies.
to tuning the level of prefetch aggressiveness; otherwise the enﬁr&qé/] IEEE Computer11(12):7-21, Dec. 1978.

. . . A. J. Smith. Cache memoriesACM Computing Surveys (CSUR)
cost of prefetching will be dominated by the overhead from t 14(3):473-530, 1982.

prefetching hardware energy consumption and from extra L1 I00KUR$] M. Zhang and K. Asanovic. Highly-associative caches for low-power
when prefetching requests resolve at L1 Cache. processors. Kool Chips Workshop, Micro-3Dec. 2000.

