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AbstractÐIn many real applications, for example, those with frequent and irregular communication patterns or those using large

messages, network contention and contention for message processing resources can be a significant part of the total execution time.

This paper presents a new cost model, called LoGPC, that extends the LogP [9] and LogGP [4] models to account for the impact of

network contention and network interface DMA behavior on the performance of message passing programs. We validate LoGPC by

analyzing three applications implemented with Active Messages [11], [19] on the MIT Alewife multiprocessor. Our analysis shows that

network contention accounts for up to 50 percent of the total execution time. In addition, we show that the impact of communication

locality on the communication costs is at most a factor of two on Alewife. Finally, we use the model to identify trade-offs between

synchronous and asynchronous message passing styles.

Index TermsÐMultiprocessors, modeling, pipelining, contention, network.

æ

1 INTRODUCTION

USERS of parallel machines need good performance
models in order to develop efficient message passing

applications. Several approaches to modeling the commu-
nication performance of a multicomputer have been
proposed in the literature [4], [9], [15]. These models often
capture some, but not all, of the aspects of the parallel
machine. This paper presents a new cost model, LoGPC,
that extends the LogP [9] and LogGP [4] models with a
model of network contention delay. Our primary objective
is to present a methodology of analyzing application
behavior when contention effects are present.

We use an engineering approach to performance model-

ing, as shown in Fig. 1. This approach uses three layers,

incrementally incorporating more details about system

architectures and application programs. The top layer

represents general models that capture first order system

costs, like LogP and LogGP do. The second layer extends

the first one by including more details about the modeled

architecture. For example, memory and network interfacing

could be modeled in more detail. These extra details could

be used to refine the base performance models by adding

new parameters or giving a better estimation for existing

ones. These performance metrics capture an ideal state of

the parallel system. The communication patterns of many

applications, however, cause contention delays. The third

layer includes models for estimating contention delays

based on application specific parameters.

The LoGPC model leverages the existing features of the
LogP model for fixed-size short messages which have been
shown to be successful for regular applications with good
communication locality and tight synchronization. In
addition, LoGPC uses the features of the LogGP model to
account for long message bandwidth. LoGPC extends these
models with a simple model of network contention effects.
We use Agarwal's open model for k-ary n-cubes [1] and
close it by including the impact of network contention on
the message injection rate. Finally, LoGPC models the
pipelining characteristics of DMA engines which allow the
overlap of memory and network access times.

We validate LoGPC by comparing its predictions to the
measured performance of three applications implemented
with Active Messages [11], [19] on the MIT Alewife [2]
multiprocessor. The applications used for validation are
all-to-all remap with synchronous and asynchronous
messaging, a dynamic programming-based DNA chain
comparison program called the Diamond DAG, and
EM3D, a benchmark code that models the propagation
of the electromagnetic waves in solids.

Using our analysis techniques, we were able to identify
and then eliminate performance bugs in our original
implementation of EM3D which accounted for 20 percent
of its runtime. In addition, we show that network conten-
tion delays cause the performance of the Diamond DAG
application to vary by up to 54 percent depending on how
data is mapped to the nodes. Finally, we show that network
contention accounts for up to 50 percent of total runtime in
the all-to-all remap benchmark.

In addition, we have used the LoGPC model to study
two aspects of parallel program design. First, we have
studied the impact of locality (i.e., the data and process
mapping) and message size on network contention. We
show that, given the MIT Alewife machine parameters,
the performance effect of communication locality in
applications with long messages and uniform message
distributions is at most a factor of two.
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Second, we have examined the trade-off between the
contention overheads for synchronous and asynchronous
message passing. We find that asynchronous message
passing avoids the costs of Network Interface (NI) conten-
tion under uniform message destination distributions, but
that synchronous message passing is preferred under
skewed distributions because it avoids creating network
hotspots.

While LoGPC is highly accurate in its runtime
predictions (within 12 percent for the communication
patterns we studied), we believe that its main value lies
in its usefulness for these kinds of engineering trade-off
studies. The marriage of simple cost models, like LogP,
with simple contention models allows us to study a range
of trade-offs between computation, communication, and
contention when designing new parallel applications.

1.1 Overview

The remainder of this paper is organized as follows:
Section 2 discusses the contention-free performance model
with the LoGPC extension for pipelined DMA. Section 3
describes the network contention model used in LoGPC.
Section 4 discusses how the model may change assuming
different message receptions, different NI architecture and
network models, and different implementations of messa-
ging. In Section 5, we discuss the experimental results,
comparing the LoGPC predictions with measured appli-
cation performance on the MIT Alewife multiprocessor.
Section 6 discusses related work, and Section 7 concludes
the paper.

2 CONTENTION-FREE COMMUNICATION

PERFORMANCE

This section discusses and parameterizes the communica-
tion performance on the MIT Alewife multiprocessor using
Active Messages in the absence of network contention. In
the first part, we discuss the LogP [9] parameterization of

the Alewife machine for short messages. For short
messages, and ignoring contention, LoGPC is equivalent
to LogP. In the second part of this section, we show how we
model the performance of long messages, again, without
accounting for contention. For long messages, LoGPC uses
the same parameters as LogGP [4] and, in addition, takes
DMA pipelining into account. The performance parameters
derived here are used in later sections to derive the
contention components for different applications.

The MIT Alewife multiprocessor has a no end-
around asymmetric mesh network with bidirectional
channels using wormhole routing. Each node has an
integrated shared-memory and message passing inter-
face with 256-byte network input and output queues.
The architecture of the communication controller [2] for
message passing (we ignore the shared memory sup-
port) in each Alewife node is shown in Fig. 2. The two
DMA engines support efficient message transfer between
network queues and memory.

The message passing layer used is interrupt-based
Active Messages. A message will include the address of
the receive handler that is executed after the interrupt is
processed. The receive handler has higher priority than the
background thread, i.e., a message will interrupt the
execution of the running thread on the receiving processor.

2.1 Short Message Performance

For short messages, the LoGPC model uses the perfor-
mance parameters of the LogP [9] model. LogP is a
simple parallel machine model that reflects the most
significant factors affecting the performance of traditional
message passing computers. The LogP model parame-
terizes parallel machines in terms of four parameters:

1. L= Latency, or the upper bound on the time to
transmit a message from its source to destination in
an unloaded network.

2. o= overhead, or the time period during which the
processor is busy sending and receiving a message.

3. g= gap, or the minimum time interval between
consecutive sends and receives.

4. P= Processors, or the number of processors.

The model also assumes a network with a finite capacity,
i.e., if a processor attempts to send a message that would
exceed the capacity of the network, the processor stalls
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Fig. 1. An engineering perspective to performance modeling of parallel

computer systems.

Fig. 2. Alewife network interface. The two DMA engines move user level
messages between the network queues and the memory. The controller
interrupts the processor whenever a new message arrives in the input
queue.



until the message can be sent. The model is asynchro-
nous, i.e., processors work asynchronously and the
latency experienced by any message is unpredictable,
but, in an unloaded network, bounded above by L.

The network latency, L, for short messages in the
LogP model is defined to be the time after the sending
processor is finished performing the send operation and
before the receiving processor is interrupted with notifica-
tion of the arriving message. On Alewife, this parameter
corresponds to the time required for the first byte of the
message to make its way through the network plus
several additional cycles for the entire 8-byte header to
arrive at the network interface before the receiving
processor is interrupted. Additional latency for message
payload beyond the header can be ignored because the
arrival overlaps with the processor's interrupt processing
(and is, therefore, included in the or parameter).

The g, or ªgapº parameter represents the maximum rate
at which a processor can inject messages in the network and
captures the node to network bandwidth. On Alewife, the
node to network bandwidth is higher than the maximum
rate at which short messages can be composed. Thus, the
send overhead, os, can be used to approximate the gap. Our
empirical results confirm the validity of this approximation.

The short message LogP performance results for the
Alewife multiprocessor are shown in Table 1. The send
overhead, os, is very small, and the receive overhead, or, is
essentially the cost for taking the interrupt. As explained
above, the latency, L, is constant as message length grows
because the arrival of any data after the header is over-
lapped with the receive interrupt handler.

2.2 Long Message Performance and Pipelining

For long messages, LoGPC uses the same parameters as
LogGP, and extends the model to account for pipelining in
the DMA unit. The LogGP [4] model is an extension of LogP
for long messages. It accounts for long message support
with an additional parameter, G, or Gap per byte, where 1/G
is the network bandwidth in bytes per unit time.

As shown in Fig. 2, each Alewife node has two
DMA channels which are used exclusively for long
message sending and receiving. The sending DMA is
programmed by writing special control words into the
memory mapped IPI output registers. This is followed
by the processor issuing a send instruction to start the
message injection into the network.

The network interface interrupts the processor each
time a message is received at the network input queue.
The processor examines the message header and starts
transferring long messages to memory by issuing an
instruction to start the receive DMA engine. The send and

receive DMA engines can operate simultaneously,
although they will contend for the memory port. When
it occurs, this memory contention causes a 45 percent
slowdown for each DMA operation.

The send and receive DMA operations may be either
blocking or nonblocking. In blocking mode, the processor
starts the DMA operation and then waits for the entire
memory transfer to finish before continuing. This is useful
if, for buffer management or synchronization, the processor
needs to know when the memory transfer has completed.

If there are other threads available to overlap the
memory transfer, the program may instead choose to issue
a nonblocking DMA operation. In this mode, the processor
starts the DMA operation but then continues with other
work, permitting the overlap of communication and
computation.

The measured LogGP parameters for long messages
are shown in Table 2. The processor overheads for large
messages are larger than for short messages as they also
include DMA setup operations. Both sending and receiv-
ing a message includes a 10 cycle cost for initializing the
DMA engine. The message receive overhead also includes
the 119 cycle cost of an interrupt. Fig. 5 shows the
bandwidth for various message sizes with bulk transfer.

Sending a message of B bytes first involves spending
osl cycles in launching the message, including the cost for
DMA setup. In the nonblocking version, the sender
processor is busy only during this time. Each byte travels
L cycles before reaching the destination processor. As with
short messages, for long messages in the LoGPC model, we
define the network latency L to be the average latency of a
message header in an unloaded network. The measured
latency for long messages is not the same as that for short
messages because, for long messages, we include only the
cost of network traversal for the first byte and not the time
for the rest of the header packet.

Bytes subsequent to the first take G cycles to enter the
network, as shown in [4]. After the first few bytes of the
header arrival (shown as a in Fig. 3), the network interface
generates a processor interrupt, which runs a receive
handler. The handler starts up the DMA transfer and then
the processor returns to the main thread interrupted by the
receive handler. During the time the interrupt is taken,
message data continues to arrive and is queued in the
network input queue.

The DMA engine on the sending node, the wormhole
routed network, and the receiving DMA work in parallel as
a three stage pipeline to provide nearly minimal end-to-end
delivery times. This pipelining is demonstrated in both
Figs. 3 and 4. Because the memory bandwidth on Alewife
is nearly twice the network router bandwidth, data is
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TABLE 1
LogP Short Message Parameters on the
MIT Alewife Multiprocessor (in Cycles)

TABLE 2
LogGP Long Message Parameters with Bulk Transfer Active

Messages on the MIT Alewife Multiprocessor (in Cycles)

Both the send overhead, osl, and receive overhead, orl, include the
10 cycle cost of initializing the DMA engine. The message receive
overhead also includes the 119 cycle cost of an interrupt.



transferred to memory faster than it arrives in the input

queue. For sufficiently long messages (about 1,000 bytes),

any queue buildup that occurs during the initial interrupt

will be drawn down by the time the final byte arrives.
For these messages, the network bandwidth is the

limiting factor. The total end-to-end delivery time, defined

to be the difference between the time at which the sending

node first starts the send operation to the time the receiver

receives the last byte, will be given by

osl � L� �Bÿ 1� �G: �1�
Here, osl is the time for the sender to initiate the message,

L is the average time for the message header to travel

through the network, B is the message length (in bytes), and

G is the network ªGapº (in cycles per byte). (See Table 3 for

a summary of notation.)

For messages smaller than 1,000 bytes, the cost of the

initial interrupt is also a factor. For these messages, the end-

to-end delivery time is osl � L� aG� orl �BGm. Here, orl is

the cost of handling the interrupt and Gm gives the memory

transfer rate to move the queued data to memory.
In general then, the total end-to-end message delivery

time from sender to receiver, which we denote with Tsÿr, is

given by:

Tsÿr � osl � L�max orl � aG�BGm; �Bÿ 1�G� �: �2�
For the applications considered in this paper, the

message length is always larger than 1,000 bytes and we

use the simpler (1).

3 NETWORK CONTENTION

This section presents a methodology for extending LoGPC

to account for network contention. The basic approach we

take is to begin with the LogGP machine parameters along

with information about a specific program's messaging rate,

and to then apply these parameters to a queueing model to

calculate the network contention observed by the program.
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Fig. 5. Network bandwidth, 1/G, for different message sizes. For

sufficiently large messages (over about 10 Kbytes), the network

bandwidth can be approximated as constant.

Fig. 4. Network bandwidth swamps interrupt cost. The upper curve (ªmin
End to Endº) shows total delivery time from initiation on the sender to the
delivery of the final payload byte on the receiver including the cost of
interrupting the receiver. The lower curve (ªmin Osº) shows the cost of
performing only the sender side operation, from the initial send operation
to the injection of the final byte into the network. For messages larger
than 1,000 bytes, the two times are nearly equivalent because the fast
memory transfer drains the queues that filled during the interrupt.

Fig. 3. Input queue length as a function of time during pipelined long
message transfer on the MIT Alewife mulitprocessor. An interrupt is
generated only after the first several bytes arrive (time aG). Message
data continues to arrive during the time the interrupt is being processed
and before the DMA transfer is started (time orl). The memory transfer
bandwidth, Gm, is somewhat better than the peak network bandwidth,
G, so eventually the queue empties and data is transferred to memory at
the slower network rate.

TABLE 3
Summary of Notation



Our technique uses Agarwal's open model for
k-ary n-cubes [1] to calculate the network contention
from the message injection rate, and then closes the model
by feeding the network contention costs back into the
calculation for the message injection rate. This section
begins by giving a brief overview of Agarwal's model, (3)
through (6). Then, we discuss the method for closing the
model. Next, we give a number of specifics for dealing
with short and long messages and locality. The section
closes with a discussion of a method for deriving an
upper bound on the effects of network contention.

In this paper, we consider directly buffered k-ary n-cube
networks that use wormhole routing. In wormhole routing,
when the header of a message is blocked, all other data in
the message stops advancing and remains in the network,
blocking the progress of any other message requiring the
channels occupied. Our objective is to provide a methodol-
ogy of predicting network contention in message passing
applications.

The average distance (with randomly chosen message
destinations) a message travels in each network dimension
is denoted by kd, thus, the average distance in an
n-dimensional network is nkd. The average delay through
a switch is derived by Agarwal in [1] from a set of equations
that result from the M/G/1 queuing system. We assume a
minimal routing algorithm, i.e., the message header is
routed completely in one dimension before the next. The
average waiting time, as a function of the probability of a
message arriving at an incoming channel, and the length of
the message size is given by the following expression:

wb � �B

1ÿ �
kd ÿ 1

kd
2

1� 1

n

� �
: �3�

This equation could also be expressed as a function of the
probability of a network request, m, in any given cycle on a
processor. The probability of a message arriving at an
incoming channel, �, is a function of m and can be
determined as follows: The message must travel a distance
of nkd on the average. With B bytes, the probability of a byte
arriving at an incoming channel also increases by a factor of
B. Because each switch has n channels, and assuming that
we have bidirectional channels implemented as two
physical channels, the probability of a message arriving at
an incoming channel is:

� � Bmnkd
2n

� Bmkd=2: �4�

Thus,

wb � mB2=2

1ÿmBkd=2
kd ÿ 1

kd
1� 1

n

� �
: �5�

The above equation describes the average per node
contention delay caused by a message of B bytes
traveling kd distance in each dimension and assuming a
message injection rate, m. The total network contention
delay per message traveling an average of kd distance in
each of the n dimensions is:

Cn � nkdwb: �6�

Assuming we know the no contention message rate, we
can compute the average delay due to contention. Although
this approximation may be acceptable for short messages,
for long messages, we easily obtain a message injection rate
that is higher than the saturation rate. In order to be able to
compute the delay due to contention, we need to feed back
the contention delay into the message rate (as the message
rate decreases with contention). This is an extension to the
network model presented in [1], where the message
injection rate was considered constant. The following
equation describes this situation:

1

T � Cn � mc: �7�

The message rate without contention is 1
T . Assuming a

message of size B sent on average in one iteration, each
with Cn contention, then mc gives the average message rate
with contention. The above equation is a quadratic equation
in either � or mc. Solving this quadratic equation gives the
solution for the contention with large messages.

3.1 Short Messages

In the LogP model, the cost for sending a short message
from source to destination, not including contention, is
os � L� or. This time is inflated by Cn when contention
delay is considered.

Tsÿr � os � L0 � or � os � L� Cn � or: �8�
Replacing Cn with its expression in the previous

equation, we obtain the transfer time of a short message
including the cost for network contention. The message size
B is the size of the short message in bytes.

Tsÿr � os � L� �n� 1��kd ÿ 1�B2mc=2

1ÿmcBkd=2
� or: �9�

In applications with high message injection rates, net-
work contention can also cause blocking in the commu-
nication controller. This causes inflation of the send
overhead for the next message being sent. The inflation of
the overhead depends on the message injection rate and the
total amount of buffering available at the sender, at the
receiver, and in the network.

On the other hand, as the send overhead increases the
message injection rate, m decreases, and so, the likelihood
of network contention decreases. As we show in Section 5,
the problem of send operations blocking becomes particu-
larly severe with asynchronous message passing if the
communication pattern develops hot spots.

3.2 Long Messages

The long message transfer time with contention effects
can be derived in a similar way. The time at which the
entire message of length B is available at the receiving
processor is:

Tsÿr � osl � �Bÿ 1�G0 � L0
�Bÿ 1�G0 � L0 � �Bÿ 1�G� L� Cn:

Network contention inflates the network latency a
message observes as well as reduces the observed network
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bandwidth. We denote the inflated L and G parameters
with L0 and G0. On average, we assume an inflation of both
L and G such that the sum of all inflation during
transmission equals the total contention delay Cn. A better
way to account for the contention is to consider only
the impact of blocking the message header and keeping
the G parameter constant for the rest of the message. The
intuition behind this is that once the header of a message
arrives to the destination processor, the rest of the
message can proceed without contention because of
wormhole routing. The network contention, Cn, can be
obtained by solving (7). The final expression for the transfer
time can then be obtained by replacing, in Cn, the message
injection rate, mc, obtained previously:

Tsÿr � osl � �Bÿ 1�G� L��n� 1��kd ÿ 1�B2mc=2

1ÿmcBkd=2
: �10�

3.3 Locality

This model can easily be extended to account for commu-
nication locality. In applications that exploit locality of
communication, the average distance between communicat-
ing processors is reduced. Reducing the average distance
messages travel improves latency because it reduces the
number of hops per message and also reduces network
contention. Different applications can use different locality
models. We model locality by reducing the average
message distance, kd. We assume that each message from
any processor travels a maximum of l hops in any direction.
Destinations are randomly chosen inside this span.

The Alewife multiprocessor is based on a 4 x 8 no
end-around mesh with bidirectional channels. The
average network distance (assuming randomly chosen
destinations) can be calculated as the sum between the
average distances along the x and y dimensions. On
any dimension k, the average distance is k2ÿ1

3k .

2kd � kdx � kdy �
�kx � ky� ÿ 1

kx
� 1

ky

� �
3

: �11�

The average message distance on the Alewife mesh is
2kd � kdx � kdy � 3:875. Using a locality model in which
processor i sends messages to either processor i� 1 or iÿ 1
with equal probability will result in an average distance,
2kdl � 1:875. This distance is computed as follows:

2kdl � 1

xy

XPÿ1

p�0

hops�p; pÿ 1� � hops�p; p� 1�
2

: �12�

As the x dimension is larger than the y dimension, and x
is the lower dimension, contention effects will be more
pronounced on x compared with y. As the mesh in Alewife
has no end-around connections, contention effects are
higher in the central regions compared with margins. The
impact of communication locality on the Alewife machine
was presented by Johnson in [12].

3.4 Upper Bound on Contention

An upper bound on the performance degradation due to
network contention can be derived assuming a maximal
message injection rate (i.e., the processors do no work, but

simply try to continuously send messages) and by using a
mapping with large network distances (e.g., a random
mapping). This also gives us an indication on performance
improvements obtainable with improved mapping or
communication locality for very fine-grained applications
with large messages.

If there were no contention, the maximal message
injection rate would be 1

2GB. Solving the following equation
(obtained from (7)) gives a bound on the message injection
rate, m, with contention:

1

2GB� �n�1��kdÿ1�B2mc=2
1ÿmcBkd=2

� mc: �13�

The solution obtained for mc has the form mc � 1=FB,
where F is a constant derived from the pair kd;G, or
F � F �kd;G�. The intermessage time with contention, Tc, is
the inverse of the message injection rate with contention, or
1=mc. A constant upper bound on the inflation of the
intermessage time is, then:

Tc=T � FB

2GB
� F �kd;G�

2G
: �14�

Plugging in the Alewife parameters into the above
equation gives an upper bound of 2:2 on Alewife.

4 DISCUSSION

The network contention model presented in the previous
section can easily be adapted to slightly different network
topology assumptions. The dimension of the network is
captured by the n parameter. Other aspects of the network,
such as end-around connectivity and the type of physical
channels used (e.g., unidirectional or bidirectional), can be
incorporated by changing kd. For example, the average
message distance with unidirectional channels and
end-around connections in one dimension is kÿ1

2 . A
description of average message distances for k-ary n-cubes
is presented in [1], for buffered indirect networks in [18].

The communication coprocessor-based communication
interface is different only in the reduced processor overhead
cost due to a better overlapping between communication
and computation. The DMA-based Alewife network inter-
face actually emulates a communication coprocessor as, for
relatively long messages, the communication times are
completely overlapped with computation. Because message
injection rates could potentially be higher in such archi-
tectures, the impact of network contention is even more
significant.

Applications that use polling driven messaging would
need to account for the receive software overheads
differently. The analysis for contention effects can be done
in a similar way as for the interrupt-based systems.

Network contention effects are less pronounced with
high-level messaging systems such as MPI. The explanation
is that the communication performance is often limited by
the high software overheads.

Parallel computers that implement message passing
layers on top of a shared-memory system will still suffer
from network contention as the network contention cost is
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mainly determined by the communication volume, which is
the same in both cases.

Network bandwidth (and, therefore, contention) on
Alewife is fairly representative of what is found in a
variety of current generation commercial and research
multiprocessors [7]. Because processor speeds are increas-
ing faster than the bandwidth of high-end local area
networks (e.g., Myrinet), network contention effects on
networks of workstations (e.g., [21]) will be somewhat
more severe than the contention observed on Alewife.

5 APPLICATIONS

In this section, we validate LoGPC against several applica-
tions. The applications studied include an all-to-all remap
with either asynchronous or synchronous messaging styles,
a dynamic programming-based DNA chain comparison
program, called the Diamond DAG, and EM3D, a bench-
mark code that models the propagation of electromagnetic
waves in solids.

Our validations are performed against the MIT Alewife
multiprocessor which was parameterized in Section 2.

5.1 All-to-All Remap

In this section, we analyze the performance of all-to-all
remap with both asynchronous and synchronous short
messages, as well as for long messages. By an all-to-all
remap, we mean any communication pattern where each
processor p repeatedly sends messages to either a randomly
chosen destination, or to destinations �i� p�mod P while
increasing i. The goal of this section is to highlight the key
differences between asynchronous and synchronous messa-
ging as well as validating LoGPC for different communica-
tion patterns. We focus on the effect of network contention,
both on the observed network latency and on the cost of
blocking during send operations. For synchronous mes-
sages, we also include the delay due to contention for
processor resources. We find that asynchronous messaging
is much less sensitive to network contention than is
synchronous messaging. The network contention model
turns out to very accurately predict the performance of the
communication.

5.1.1 Synchronous Short Messages

A synchronous short message in this paper denotes a
request-reply pair. In some sense, it is similar to a remote
read or write primitive in a simple shared memory system.
The thread issuing the request waits for the reply message
before the next request is issued. A request arriving at a
processor is queued if it cannot be serviced immediately
(e.g., if another request is already being serviced). In the
synchronous all-to-all remap measured here, each processor

repeatedly sends a message to a random destination and
then waits for a reply message.

These communication patterns have been previously
examined in [15]. That paper introduces an extension to
LogP, called LoPC, that uses a multiclass queueing model,
based on Mean Value Analysis, to predict contention
between different threads for processor resources. For
applications using synchronous short messages, overall
communication volume is quite low (because each
processor can have only one outstanding message at a
time), and so contention between messages in the network
is not a significant portion of runtime. Rather, LoPC
focused on the interference effects of different message
handlers trying to run on the same processor at the same
time. An empirical result of the LoPC work was that, for
communication patterns like synchronous all-to-all remap
using short messages, the queueing delay per message
sent, Cr, is approximately equal to the cost of a message
handler that sends a reply message (or � os). The cost of
each communication roundtrip is then modeled by LoPC as
2�os � L� Cn � or� � Cr.

We show both the measured times and predictions of
several different models in Table 4. For synchronous
messaging, the cost of each communication iteration is
2�os � L� Cn � or� � Cr, where Cr denotes the average
contention for processor resources and Cn is the additional
latency observed due to network congestion. Of the average
486 cycles measured, for each message round-trip, the
LoPC model predicts that about 28 percent (137 cycles)
are due to contention between message handlers for
processor resources. The LoGPC model predicts that an
additional 46 cycles (2Cn) is due to contention between
messages in the network. Added to the base contention-free
cost of 316 cycles, given by 2�os � L� or�, the LoGPC model
predicts an average cost per message roundtrip at 499 cycles,
a 3 percent overestimate.

5.1.2 Asynchronous Short Messages

The effect of network latency can sometimes be avoided by
using an asynchronous messaging model. In an asynchro-
nous all-to-all remap, each processor sends n messages to
n different locations without waiting for any reply
messages. On average, each processor will both send and
receive n messages. We model the total cost of asynchro-
nous all-to-all remap with n iterations as n�os � or�. This
communication pattern should be insensitive to network
latency because there are no dependencies on the time at
which messages arrive.

Table 4 shows the measured and predicted cost per
iteration of asynchronous all-to-all remap. The measured
cost is about 10 percent larger than predicted by the model.
About a third of the difference (5 cycles) is due to
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TABLE 4
Cost of One Iteration in All-to-All Remap with Two Argument Short Message (in Cycles)

LoPC [15] is used for estimating processor contention in synchronous messaging. LoGPC includes both costs for network and processor contention.
The LogP cost for asynchronous messaging is os � or, and for synchronous messaging is 2�os � L� o=r�.



unmodeled cache interference effects. The rest of the
difference is due to another unmodeled feature of the
Alewife communication system. A message that interrupts
a send operation incurs extra cost for storing the partially
constructed message.

We calculated the average message injection rate for
asynchronous messages as m � 1

os�or assuming that, on
average, a send and a receive is served inside each iteration.
The last column of Table 4 shows that although messages in
this communication pattern incur a considerable amount of
extra latency due to network contention, none of the send
operations ever blocked because of network flow control.
For well-distributed communication patterns like that used
here, there are few network hotspots, and Alewife's
network output queues are sufficient to hide network
contention from asynchronous send operations. Later in this
section, we show that the communication pattern from the
EM3D application incurs considerable network hotspot
contention which does cause send operations to block.
Similarly, communication patterns with long messages, as
discussed next, can observe considerable cost for blocking
sends.

5.1.3 Long Messages

Next, we examine an asynchronous all-to-all remap with
randomly chosen message destinations and long messages
of length B bytes. Assuming that, on average, one
message arrives for each message sent, then the cost of
one iteration is os � �Bÿ 1�G� �Bÿ 1ÿ a�G, or approxi-
mately 2BG. See [4] for a similar approximation. As
shown in Section 2, on Alewife, G � 0:5 cycles/byte, so
the maximum rate is one message injection per B cycles.

Applying the model in Section 3 (see (13)), we find that
in fact the maximum message injection rate, including
contention effects, is one message every 2:22B cycles.
As shown in Fig. 6, this is a relatively close to the measured
message injection rate for all-to-all remap. Across a variety
of message sizes, the measured rate shows a small variation
around one message per 2:03B cycles.

Note that this analysis has been performed with a
maximal message injection rate (i.e., an application that
simply tries to send messages as quickly as possible
without stopping to do any work). Increasing the
computation to communication ratio, or improving the
application locality, will decrease network contention.

This permits us to find an upper bound on the effect of
contention with randomized communication patterns.
Given the Alewife machine parameters, application
performance, including network contention, is at most a
factor of 2.22 worse than without any contention.

5.2 Diamond DAG

In this section, we derive and analyze efficient schedules
for the Diamond DAG application. Diamond DAG is a
DNA chain comparison program that uses an algorithm
based on dynamic programming. This application,
Diamond DAG, has been previously analyzed with the
delay model [22] and the CLAUD model [6].

Our objective in this section is to show how to derive the
performance analytically, including the costs of network
contention. First, we derive the performance for the no
contention case. Then, we calculate the message injection
rate including network contention effects. The network
contention delay obtained is added to the makespan along
the critical path of the DAG. Finally, we compare the
analytically derived cost with measurements of an imple-
mentation with bulk transfer Active Messages on Alewife.

The Diamond DAG, with n� n tasks, can be represented
as an n� n grid, with vertexes representing tasks and edges
representing data dependencies between tasks, see Fig. 7.
For the remainder of this section, we will define a unit time
as the time to compute a task and express the parameters L,
o, and G in terms of this unit time.

5.2.1 Stripe Partitioning

The Gantt Chart in Fig. 8 represents a feasible schedule
for the Diamond DAG. Several other partitioning solu-
tions, like line partitioning or a dynamic partitioning of
tasks to processors, could also be considered. Finding the
optimal partitioning scheme for the Diamond DAG is
outside the scope of this paper. Instead we will focus on
choosing the correct communication granularity given a
stripe partitioning.

In a stripe partitioning, the DAG is partitioned across the
processors into P equal horizontal stripes, each the of size
�n=P � � n. Each stripe is further split into b equal
rectangular blocks with n2=Pb tasks each. Each block
depends on, and must wait for, the n=b results from
the block below it in the dependency graph. After all
n2=Pb tasks in a block have been computed, the n=b data
values along the top edge of the block will need to be sent to
the processor that owns the stripe above. Choosing the
optimal block size involves a trade-off between the reduced
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Fig. 6. All-to-all remap for long messages.

Fig. 7. Diamond DAG.



communication costs obtained by bundling messages and
the increased serialization because each processor must
wait for the first data set from the previous processor.

We define the makespan, M, as the time consumed for
evaluating the entire Diamond DAG. We represent it in the
following form

M � �W � d� � �P ÿ 2�u� �bÿ 1�v�Or �W: �15�
This expression follows the critical path in the Gantt

chart in Fig. 8. This involves some work on the initial
processor, W , followed by the initial message latency to the
second processor, d. Next, u � Or �W � d accounts, on
each processor, for the initial cycle of message receiv-
ing, work, and latency to the next processor. Finally,
�bÿ 1�v�Or �W , where v � Os �W �Or accounts for the
processing done in the final stripe.

In the above expression, W includes both the algorithmic
work, wa � n2

Pb , for each block and the extra cost for message
aggregation, which we approximate as proportional to the
number of data values sent after each block is computed.
Thus, W � wa � � n

b .
We use d to denote the period from the time the sender

sends the first byte and the receiving processor is notified of
the message arrival. This time is L� aG, where L is the time
needed for the first byte to travel through the network and
aG is the additional time for the complete a byte message
header to arrive at the destination.

Finally, we note that, if the message length per
block is B � n=b, then, using the model from Section 2,
Os � os � �Bÿ 1�G and Or � �Bÿ 1ÿ a�G.

Now, we can find the maximum of M in b by solving the
equation @M=@b � 0.

To account for the costs of network contention, we use
the model from Section 3 with the message rate calculated
from the equation

mc � 1

v� 2Cn
;

where 2Cn is the network contention component inside a
block.

An upper bound on the cost of contention can then be
calculated by assuming that this network contention
component is observed by all communication primitives
along the critical path. This includes P ÿ 1 sends for the
communication in the first block of each stripe and an
additional bÿ 1 sends and receives in the final stripe.

5.2.2 Experimental Results

We implemented the Diamond DAG with bulk transfer
Active Messages. Although the bulk message mechanism
itself is very efficient, the cost for message aggregation and
unpacking is very high, accounting for more than 50 percent
of total runtime with n � 1; 024 and b � 4. The computa-
tional phase of each task consists of two double precision
floating point additions and one multiplication.

For the purposes of experimentation, we created a
version of the program where the amount of data associated
with each block can also be varied. We examined three
different mappings of stripes to processors. In the first
mapping, stripes were allocated to randomly chosen
processors. In the second mapping, stripes were allocated
by Alewife's default node numbering, i.e., stripe i is
mapped to processor i. While this is better than a random
mapping, it is not optimal because the system mapping
does not put all sequential processor numbers adjacent to
one another in the mesh. In the final mapping, we carefully
allocated the stripes such that each processor would
communicate only with two physically adjacent processors.

A comparison of measured and predicted values can
be seen in Fig. 9. For message lengths up to 16,000 bytes,
we observed no contention. The contention-free model
provides performance estimates that are accurate to
within 3.14 percent. Network contention begins to affect
the randomly mapped version when the message size
reaches 32,000 bytes per block. This corresponds to a
communication to computation ratio of 0.625. As we
increased the message length up to 320,000 bytes, the
randomly mapped version became up to 56 percent
slower than the perfectly mapped version. Using Alewife's

412 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 4, APRIL 2001

Fig. 9. Diamond DAG performance. Comparison of measured perfor-
mance to model predictions with stripe partitioning, n � 1; 024, b � 64,
and each task takes 100 cycles. The ªAlewife localityº curve uses the
system default node numbering in the Alewife mesh. Node i sends to
node i � 1, but numerically adjacent nodes are not always adjacent in
the mesh.

Fig. 8. A Gantt chart of computation and communication schedules for
the Diamond DAG with stripe partitioning. The rectangular blocks
represent the blocking send (os) and receive (or) overheads as well as
computation times (w). The arrows represent communication between
processors.



standard processor, mapping caused up to 31 percent
runtime increases due to network contention.

Similar message sizes and communication to computa-
tion ratios would also be observed by increasing the
parameter of n (as for very long DNA chains) while
keeping b small. Thus, performance degradation, due to
network contention, sets a lower bound on the number of
blocks, b, used for stripe partitioning in the Diamond Dag
application.

5.3 EM3D

EM3D is a program originally developed at UC Berkeley
with the Split-C parallel language. It models the propaga-
tion of electromagnetic waves through three-dimensional
objects using algorithms described in [20]. We started with a
message passing version ported from a CM-5 bulk transfer
implementation [8].

EM3D operates on an irregular bipartite graph which
consists of E nodes on one side, representing electric values
and H nodes on the other, representing magnetic field value
at that point. The program has input parameters that can be
used to control the total communication volume and the
communication locality.

The core phase of the EM3D repeatedly updates the
E and H nodes. In each iteration, each node requires the
values of all of its neighboring nodes. A processor must
send a value for each of its edges that ends on a different
processor. In our implementation, values are sent in
blocks of 10 using Alewife's short-message facility. This
technique is also described as ghost nodes or software
caching in [8]. The idea is to communicate node values
along edges and buffer them at the receiving processors
before the computation phase begins (See Fig. 10).

The communication phase in the core computation is
similar to the asynchronous short message all-to-all remap

described earlier. We model the communication costs as
os � or per message.

5.3.1 Experimental Results

Fig. 11 shows a comparison of the measured and
predicted runtimes of EM3D as the locality parameter is
varied. We used an input data set with 3,200 nodes,
degree 32, 100 percent nonlocal edges, 100 iterations and
varied the span parameter from 1 to 15. The volume of
communication inside the core communication phase is
determined by the number of nodes and the degree
parameters. The locality of communication is determined
by the span parameter. A larger span corresponds to less
locality in the communication pattern.

Although the communication phase is similar to the
asynchronous all-to-all remap phase described earlier, we
observed a much larger effect in the EM3D of network
contention, causing send operations to stall. We suspected
that the cause of this contention was hotspots in the
nonuniform communication pattern. We rewrote the core
communication phase so that the message distribution was
more uniform (i.e., random). This provided a 70 percent
reduction in stall time and a 20 percent overall improve-
ment in runtime. The modified results are labeled ªim-
provedº in Fig. 11. The remaining differences between the
predicted and measured runtimes are due to further
hotspots in both the synchronization and communication
phases that we were unable to eliminate.

6 RELATED WORK

The LogP model [9] is a simple parallel machine model
intended to serve as a basis for developing portable parallel
algorithms. Alexandrov et al. defined the LogGP [4] model
as an extension of LogP to capture the large bandwidth
requirements of applications using long message primi-
tives. LoGPC leverages the performance parameters of
LogP and LogGP and extend the analysis with a more
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Fig. 10. EM3D core computation phase for E or H nodes.

Fig. 11. EM3D performance. Comparison of measured performance to
model predictions for the core E + H computation phase of EM3D. On
the X axis, the ªspanº parameter is varied. A larger span corresponds to
less locality in the communication pattern. As the communication pattern
is asynchronous, when contention hotspots are eliminated, the LogP
runtime prediction is the same as the LoGPC prediction. Remaining
differences between the LoGPC (or LogP) predicted performance and
the measured ªimprovedº performance are due to further hotspots in
both the synchronization and communication phases that we were
unable to eliminate.



detailed model of the DMA pipeline and a network
contention component.

The LoPC model [15] also extended the LogP model with
a contention model. LoPC, however, focused on contention
between different threads for computation resources rather
than on network contention. For the communication
patterns studied in that paper (mostly based on synchro-
nous short messages), contention for processor resources
accounts for up to a third of total execution time while
network contention is not particularly significant. In this
paper, we have focused on modeling applications where
network contention accounts for a significant portion of
total runtime.

The Claud model [6] is similar to the LogP model in the
sense that it uses a small set of parameters to model the
performance of a message passing computer. Claud
attempts to incorporate more details about the interconnec-
tion network for a more accurate prediction of network
latencies, but does not account for contention effects.

The network contention model used by LoGPC starts
with the open queueing model described in [1], but extends
and closes the model by relating the terms for message
injection rate and message latency. A similar open model of
network contention was used by Kruskal and Snir for
buffered indirect networks [18]. The impact of communica-
tion locality on the Alewife machine using a closed network
model similar to ours was presented by Johnson in [12].

A different approach to the question of communica-
tion contention can be seen in studies such as [13]. This
paper presents a worst case complexity analysis of the
nonemptiness problem including the effects of contention.
Such studies focus on worst case analysis of particular
algorithms where our approach is based on queueing
models and attempts to model the constant factors that
are of concern to application programmers and machine
designers.

A number of researchers have examined application
performance in an empirical setting. For example,
Karamcheti and Chien [17] studied the network interface
architectures in the CrayT3D and TMC CM-5 and
examined several messaging implementations for reducing
output contention effects. Holt et al. [14] studied the
performance of cache-coherent distributed shared memory
machines using four parameters similar to LogP. They used
the o performance parameter to model the occupancy of the
communication controller. Their study shows that applica-
tion performance is highly sensitive to the controller
occupancy. Finally, Chong et al. [7] examined the effect of
network bandwidth on application performance using
several different communication schemes. They find that
message passing communication primitives are less sensi-
tive to network bandwidth than are shared memory
primitives.

Several studies apply the contention-free LogP and
LogGP models to evaluate the communication performance
of various parallel computers and network of workstations.
Culler et al. [10] used the LogP model to compare the
network interfaces of the Intel Paragon, Meiko CS-2, and a
cluster of workstations with Myrinet. Moritz et al. [5]
compared the communication performance of MPI on

CrayT3D, Meiko and a network of workstations. Keaton et
al. [10] quantified the LogP for local area networks. Martin et
al. [21] studied the impact of communication performance of
parallel applications in high performance network of work-
stations. Using the LogGP parameters, they showed that
these applications show strong sensitivity to overheads.
Finally, Arpaci-Dusseau et al. [3] developed fast parallel
sorting algorithms using LogP.

7 CONCLUSIONS

Network contention and network interface contention
can constitute a large portion of the total run-time of
parallel applications. We find that contention accounts
for 50 percent of the cost of all-to-all remap with long
messages and up to 30 percent of the Diamond DAG,
and EM3D benchmarks.

This paper presented a new cost model, LoGPC, that
extends the LogP and LogGP models with a simple model
of network contention. The network contention model
extends and closes the network model described in [1]
where message injection rates were considered constant.
Although a constant message rate can be used for small
messages, it is not applicable for long messages. In addition,
LoGPC extends LogGP by modeling network interfaces
with DMA support.

For all the communication patterns studied in this
paper, the LoGPC model is able to provide performance
estimates that are within 12 percent of measured values
on the MIT Alewife multiprocessor.

By using the LoGPC model, we were able to study a
number of issues in parallel program design. First, we used
the LoGPC model to help find performance bugs in our
original version of EM3D and as a result we were able to
improve the performance of this application by 20 percent.
In addition, we have compared asynchronous and synchro-
nous messaging styles. We found that using synchronous
message passing caused significant resource contention at
the network interfaces. Therefore, asynchronous messaging
is advantageous when a uniform message distribution can
be guaranteed. On the other hand, nonuniform message
distributions can cause serious network contention which
causes asynchronous messages, sending primitives to block
for long periods of time.

Finally, we studied the impact of application locality on
network contention. We find that locality is important up to
a constant factor dependent on the network bandwidth and
application locality. Using large messages with bulk
transfer on the MIT Alewife multiprocessor resulted in a
performance degradation up to a factor of two, depending
on the mapping used.
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