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Abstract— With power consumption becoming an increas-
ingly important factor, it is necessary to reevaluate tradi-
tional, power-intensive, architectural techniques and their relative
performance benefits. We believe that combined architecture-
compiler efforts open up new and efficient ways to retain the
performance benefits of modern architectures while addressing
their power impact.

In this paper, we present Cool-Fetch, an architecture-compiler
based approach to reduce energy consumption in the processor.
While we mainly target the fetch unit, an important side-effect
of our approach is that we obtain energy savings in many other
parts of the processor. The explanation is that the fetch unit often
runs substantially ahead of execution, bringing in instructions to
different stages in the processor that may never be executed.
We have found that although the degree of Instruction Level
Parallelism (ILP) of a program tends to vary over time, it can
be statically estimated by the compiler. Our Instructions Per
Clock (IPC) estimation scheme uses monotonic dataflow analysis
and simple heuristics, to guide a fetch-throttling mechanism.
We develop the necessary architecture support and include its
power overhead. Using Mediabench and SPEC2000 applications,
we obtain up to 15% total energy savings in the processor
with generally little performance degradation. We also provide
a comparison of Cool-Fetch with previously proposed hardware-
only dynamic fetch-throttling schemes.

I. INTRODUCTION

For modern processors, the rate of increase in power
and energy dissipation is greater than that of performance.
Processors are also increasingly used in energy-constrained
battery-powered applications. This has forced designers to
reformulate their optimization criteria: power and energy are
complementing performance as additional design goals. In
this paper we present a new framework to address chip-wide
power reduction in processors by leveraging static information
speculatively. This framework is based on tight cooperation
and integration between compiler and architecture.

Specifically, we examine compiler-driven static approaches
for increased energy efficiency with only minor performance
degradation. Our approach is based on the static estimation of
the rate of instructions per clock (IPC) which is a measure
of instruction level parallelism (ILP). Most current dynamic
architectural energy savings methods depend on analyzing past
ILP behavior to estimate future ILP. In contrast, we use static
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information about the future ILP that is inherently embedded
in the program. To the best of our knowledge, this is the first
work that uses compiler-driven static-only IPC estimation for
Out-of-Order (OOO), superscalar processor energy savings.
Our contributions in this paper are:

� We develop a compiler-driven static IPC estimation
scheme that is based on dependence testing and simple
heuristics in compiler backends. This information pro-
vides an estimate for the upper-bound of available ILP.� We use this estimation scheme to drive our fine-grained
fetch-throttling energy-saving heuristic. We have exper-
imented with a variety of architectural configurations
using multimedia and Spec 2000 benchmarks. We obtain
up to 15% chipwide energy savings in the processor with
generally little performance degradation.� We compare the energy and performance aspects of the
architectural-compiler level Cool-Fetch with previously-
proposed minroarchitectural-only fetch-throttling mecha-
nisms.� We investigate whether dynamic factors such as cache
misses, branch prediction, instruction window size and
pipeline depth could dilute the efficiency of our static
IPC-estimation-based heuristic. For the test cases, we find
such efficiency variation to be small.

The compiler-driven IPC estimation approach coupled with
fetch-throttling forms the Cool-Fetch framework. Various
microarchitectural-level front-end mechanisms exist for pro-
cessor power savings[4], [6], [17], [21]. In comparison, Cool-
Fetch exploits the close coupling between the compiler and
microarchitectural levels.

The rest of this paper is organized as follows. In Section II,
we perform an energy audit to see which blocks in the
processor consume the most energy. We use this information
to target those blocks for energy savings. Section III discusses
compiler and architectural implementation issues related to our
IPC estimation and energy savings scheme followed by the
experimental setup. The results are presented in Section IV.
In Section V, we discuss related work and comment on its
relevance to this paper. We conclude in Section VI with a
brief discussion.



II. MOTIVATION

Power and energy are crucial design parameters not only at
the device-level but at the architectural and compiler levels as
well. Let us explore the architectural level first. To determine
which processor blocks are going to be major power drains
and thereby choose which sections of the processor to apply
our energy saving methods to, we conducted a preliminary
study. We analyzed the percentage of energy contribution
of different blocks for three architectural configurations. See
Figure 1. Following [5], we assume that the clock consumes a
constant ratio of the power across the components of the chip.
The results show the average for 8 multimedia applications
from the Mediabench suite. The details of the benchmarks
are explained in Section IV-A. We scale every resource
accordingly; the first configuration is a simple single-issue in-
order machine, the second is an 8-way OOO configuration and
the third is a 32-way machine. The last configuration, while
impractical, gives an idea of the power distribution if one were
to have essentially unlimited resources. We include this as an
asymptotic case. Note that the fetch- and issue-related logic,
the L1 data cache and the ALUs become dominant as the
complexity of the architecture is increased. These results agree
with the findings in Zyuban and Kogge’s study [29].

We now consider the compiler layer. In Figure 2, we
present a snapshot from the execution profile of the Spec 2000
application equake. The plot shows the actual IPC against
our compiler-driven static IPC estimation as averaged over
windows of 100 cycles each. Based on this figure, estimated
IPC provides a reasonably accurate estimate of actual IPC
and we are therefore, motivated to use the static estimation
for energy savings by throttling resources when they are not
needed. We devote the rest of the paper to exploring and
explaining this scheme.

III. IPC-ESTIMATION IMPLEMENTATION

We use a static approach to IPC estimation. It is sufficiently
accurate and it is easy to implement, extend and retune. In
our implementation, we only consider true data dependencies
(Read-After-Write or RAW) to check if instructions depend
on each other. As mentioned in [19], a major limitation of in-
creasing ILP is the presence of true data dependencies. Tune et
al. [25] also remark that the bottleneck for many workloads on
current processors is true dependencies in the code. Although
the impact of true dependencies can be mitigated through the
use of value speculation, the energy overhead of value spec-
ulation hardware has been found to be prohibitively high [8].
However, note that the compiler-driven Cool-Fetch framework
is equally applicable to an architecture with value speculation,
only the compiler-level passes need to be replaced. Another
issue that needs to be discussed is the impact of the Out-of-
Order architecture on loop-level parallelism. Intuitively, if the
instruction window is large enough, intructions across loop
iterations could be scheduled out-of-order creating an effect
that is similar to software pipelining, which is not yet captured
in our compilation framework. Here, we consider a standard,
non value speculating OOO architecture in our experiments.
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Fig. 1. Percentwise energy consumption of major processor blocks.
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Fig. 2. Estimated versus actual IPC for the equake Spec 2000 application.
Each point on the x-axis is an average of 100 cycles.

For this architectural configuration, antidependencies (Write-
After-Read or WAR) or output dependencies (Write-After-
Write or WAW) could be eliminated by register renaming, but
even infinite resources cannot eliminate true dependencies.

It is also possible to handle false dependencies in the
compiler passes: this would be a viable option if the processor
were severely constrained in its register renaming resources.
However, contemporary processors usually have enough re-
sources to eliminate most false dependencies. Another possible
use for compiler-driven ILP estimation could be the static
analysis and determination of the Functional Unit (FU) needs
of the application. A back-end energy-saving heuristic would
then dynamically turn off unnecessary FUs such as ALUs
during statically predicted periods of low-FU usage. In this
work, we have enough FU resources in our baseline so this
does not become one of the ILP limiting bottlenecks. Of
course, there are other, dynamic, factors that influence IPC,
such as branch prediction and cache misses. For our test cases,
we found that the impact of those dynamic components on the
efficiency of our static-only approach is actually smaller than
we expected.

A. Compiler-Level Implementation

We statically determine true data dependencies using an
assembly-code level data dependency analysis. The advantage
of doing the analysis at this level instead of at the source code
level is that the instruction level parallelism is fully exposed at
the assembly code layer. Our post-register allocation scheme



uses monotone data flow analysis, similar to [3]. However, our
scheme has two important distinctions: first, we use monotone
data flow analysis to identify the data dependencies, not for
instruction scheduling. Second, our method is speculative,
whereas [3] requires complete correctness. We identify data
dependencies at both registers and memory accesses. Register
analysis is straightforward: the read and written registers
in an instruction can be established easily, since registers
do not have aliases. The determination of reaching uses is
achieved using the well-known algorithm in [2]. However,
for memory accesses, this is not the case and there are
three implementation choices: no alias analysis, complete alias
analysis, or alias analysis by instruction inspection. No alias
analysis is too speculative for IPC estimation: it assumes
that a memory load instruction is always dependent on a
preceding store instruction. This model would apply if there
were no load/store queues or multiple memory ports in the
processor but modern out-of-order architectures are typically
equipped with those resources. Another alternative is doing full
alias analysis, although it requires considerable overhead to
implement, this option would ensure full correctness. Still, we
have found that our approximate and speculative alias analysis
by instruction inspection provides ease of implementation and
sufficient accuracy. In this scheme, we distinguish between
different classes of memory accesses such as static or global
memory, stack and heap. We also consider indexed accesses
by analyzing the base register and offset values to determine
if different memory accesses are referenced. If this is the
case, we do not consider this pair of read-after-write memory
accesses as true dependencies. We follow with a more detailed
description of the implementation.

We use SUIF/Machsuif as our compiler framework. SUIF
makes high-level passes while Machsuif makes machine-
specific optimizations. The final Machsuif pass produces
Alpha assembly. We added new passes to both SUIF and
Machsuif to annotate and propagate the static IPC-estimation:
see Figure 3. We use the available compiler passes and
optimizations in SUIF for aggressive extraction of ILP. Our
IPC-estimation is at the loop level: loop beginnings and ends
serve as natural boundaries for the estimation. Therefore, we
need to annotate the beginning and end of every loop. The
loop annotation pass accomplishes this: the high-level pass is
invoked immediately after we convert source code into SUIF
intermediate format and link and merge the various sources.
Therefore, this pass works with expression trees and traverses
the structured control flow graph (CFG) of each routine.

The other added pass, the IPC-estimation pass, is an
assembler-level MachSuif pass that is run just prior to assem-
bler code generation. This way, we guarantee that no com-
piler level optimizations such as instruction scheduling, which
might result in instructions being moved and/or modified, are
performed after our pass. As mentioned above, we identify true
data dependencies at memory and register accesses in the IPC-
estimation pass. The pass is over the linear instruction list of
each routine: see Algorithm 1. The algorithm examines each
routine and passes the routine as an argument to the function

High−level SUIF passes
(porky, swinghnflew)

passes (agen, raga, afin,
printmachine)

Low−level Machsuif 

assemble to binary)gcc (

Annotate Loops

Predict IPC

Insert Marker Instr.Simplescalar 3.0

cpp (.c to .i preprocessor)

scc (transform to SUIF)

Fig. 3. Compiler flow diagram, our added compiler passes are on the right.

Algorithm 1 The IPC Estimation Algorithm
for each routine do

Call TraverseInst(routine);
end for
/* For each routine, traverse linear instruction list */
TraverseInst(input)
treeList=expTree(input); /* recast input as a linear instruc-
tion list */
initialize dependencyList;
while !empty(treeList.instr) do

ipcCount++;
if treeList.instr is write then

add treeList.instr.writtenItem to dependencyList
end if
if treeList.instr is read then

while !empty(dependencyList) do
if treeList.instr.readItem in dependencyList then

insert Annotate(estimatedIpc,ipcCount);
ipcCount=0;
initialize dependencyList;

end if
end while

end if
if treeList.inst is loopBegin or loopEnd then

insert Annotate(estimatedIpc,ipcCount);
ipcCount=0;
initialize dependencyList;

end if
treeList.instr=treeList.next;

end while

TraverseInst. The function expTree in TraverseInst recasts
the routine as a linear instruction list. The instruction list is
then traversed in instruction order and true dependencies are
annotated. Thus the routine is divided into annotation blocks.
Each block carries a unique annotation in the beginning of the
block, which is simply a count of the instructions in the block.
Whenever we come across a true data dependency, we end the
block. All the instructions in the block except the last one can
potentially be issued in the same cycle. Note that we also end
our estimation block at the beginning and end of each loop.
This implicitly constitutes a simple static branch prediction
mechanism. By terminating the IPC-estimation block at the
loop boundaries, we assume that the loop branch is likely to



be taken.

B. Architectural-Level Implementation

After the compiler-passes, we use an assembler level
pass to find every IPC-estimation annotation, and insert
a marker instruction with the associated IPC number for
each. The Alpha assembly marker instruction bis is an xor
operation with the first source and the destination being
the zero-register ($31), and the second source being the
IPC-estimation. We exhaustively checked all our benchmarks
by doing a disassembly (to check system inserted code as
well): we were not able to find any naturally occurring
instruction that xors the zero register with an immediate value
and saves the result in the zero register again.

An important distinction between Cool-Fetch and dynamic
architectural-level throttling schemes is that the throttling
decision is made statically by the compiler in Cool-Fetch.
A final pass examines each marker instruction and if the
IPC-estimation is below a threshold, it inserts a throttling
flag at that point. It is this throttling flag, not the marker
instruction, that is passed to the hardware layer.

Note that the flag requires only a single bit. If enough
flexibility exists in the ISA of the target processor, then the
flag can be inserted directly into the instructions eliminating
the need for a special instruction. In our experiments, we
take this approach and also consider the additional power
dissipation stemming from this extension: see Section III-C.
If there is not enough flexibility in the ISA, then special
throttling flag instructions should be added. This may raise
the question of increased code size due to the additional
instructions. Although we do not implement this model, we
include an analysis of worst-case code size increase due to
this approach: we assume that every IPC-estimation marker
results in a throttling hint. This is unrealistic but gives an
upper bound. Across Mediabench and Spec2000 applications,
this bound is modest at 5.1% average code size increase.

For the purposes of this work we have chosen a fine-
granularity front-end fetch-throttling scheme. However, the
compiler-directed approach is amenable to back-end energy
optimization schemes as well. The fetch-throttling scheme
latches the compiler-supplied throttling flag at the decode
stage. If the flag is set, i.e., the estimated IPC is below a
certain threshold, then the fetch stage is throttled and new
instruction fetch is stopped for a specified duration of cycles.
The rationale is that frequent true data dependencies which
are at the core of our IPC-estimation scheme, will cause the
issue to stall. Therefore, the fetch could be throttled to relieve
the I-cache and fetch/issue queues and thereby save power
without paying a high performance penalty. In Cool-Fetch
the decision to throttle the fetch is taken by the compiler
and therefore the throttling threshold could be retuned to a
different value depending on the context. By comparison,
the throttling threshold value is committed to hardware in
architectural-only methods and is therefore fixed. We have
done extensive experiments to determine the threshold value
and the duration. The results suggested that a threshold of

2 and duration of 1 is the best choice. That is, we stop
instruction fetch for 1 cycle when we encounter an IPC
estimation that is at most 2. We include the architectural
implementation of our energy saving heuristic in Figure 4.
Here, when the throttling flag is set, GATEH is asserted and
the fetch stage is throttled by using a clock gater. To prevent
glitches, a low-setup clock gater is used which allows the
qualifier to be asserted up to 400ps after the rising clock edge
without producing a pulse [13].

We preferred a fine-grained heuristic over a coarse-grained
one. Coarse-grained heuristics usually average available
ILP-information over a large number of cycles, which can
lead to loss of accuracy. Consider Figure 5, where a slice
of the Epic multimedia benchmark is shown. The y-axis
denotes the actual IPC as averaged over 10,000 (coarser
granularity) and 500 (comparatively finer granularity) cycles.
It is evident that a coarser granularity scheme would be less
accurate than one using a comparatively finer granularity
scheme. However, we should note that our compiler-layer
IPC estimation framework would work equally well with a
coarse granularity scheme as well.

Fetch Unit Decode Unit

CLK

CLKQ

VDDGND

GATEH

GATEL

Throttling Flag

Fig. 4. Architectural implementation of front-end throttling. GATEH is
asserted when there is a throttling flag.
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C. Architectural Simulator Setup
The baseline architecture reflects the state-of-the-art in

current processor designs. Table I contains a description of the
baseline parameters. The trend is towards wider issue: Henry
et al. [11] propose novel circuits that scale to 8-way issue;
they also present results for a 128-entry issue/reorder buffer.
An actual implementation of a large instruction queue is the
1.8GHz 64-entry instruction window buffer by Leenstra et al.
[16]. Based on the preceding analysis, we selected an 8-wide
issue, 128 entry instruction queue as our baseline. Note that the
Cool-fetch baseline includes the throttling logic block which
we explained in Section III-B.

Processor Speed 1.5GHz
Process Parameters 0.18 � m, 2V
Issue Out-of-order
Fetch, Issue, Decode, Commit 8-way
Fetch Queue Size 32
Instruction Queue Size 128
Branch Prediction 2K entry bimodal
Int. Functional Units 4 ALUs, 1Mult./Div.
FP Functional Units 4 ALUs, 1Mult./Div.
L1 D-cache 128Kb, 4-way, writeback
L1 I-cache 128Kb, 4-way, writeback
Combined L2 cache 1Mb, 4-way associative
L2 cache hit time 20 cycles
Main memory hit time 100 cycles

TABLE I
BASELINE PARAMETERS.

We use Wattch [7] to run the binaries and collect the energy
results. Wattch is based on the Simplescalar [9] framework.
Our baseline processor configuration has 128 entries in its
instruction queue, therefore we use a 128 element RUU (Reg-
ister Update Unit). The RUU includes the instruction queue
as well as the physical register files and the reorder buffer.
We use a size of 64 for the Load-Store Queue (LSQ). We run
our baseline application without any annotations and compare
this against the IPC estimated version. Simplescalar has been
modified to recognize the compiler-generated throttling flag.
In Wattch, we use the activity-sensitive power model with
aggressive conditional clocking. The rationale for this choice
is to compare our fetch-throttling framework to an unthrottled
baseline that is already power-efficient. Wattch can be retuned
for state-of-the-art technology scaling parameters, we use
a 0.18 � m, 1.5Ghz, 2V process. We extended the power
dissipation model in Wattch so that it accounts for the extra
power overhead due to the 1-bit throttling flag field decoding
in the dispatch stage.

To extract the maximum available ILP and therefore achieve
higher IPC, some contemporary wide-issue processor designs
such as the AMD AthlonXP [1] use short pipelines; we take a
similar approach and use the default 5-stage pipeline structure
in our architectural simulator (fetch, dispatch or decode, issue,
writeback, commit) as the baseline. However, other recent
competing processors use deeper pipelines to achieve higher
clock rates at the expense of IPC. Examples of these are
the 20-stage Intel Pentium 4 [12] and the 12-stage AMD

Hammer [28]. Therefore, we also model and analyze the
impact of a deeper 11-stage pipeline (2 fetch, 4 decode, 2
issue, 2 writeback, 1 commit stages) in our sensitivity analysis.
The Simplescalar pipeline stages are extended from 5 to 11
and a branch penalty of 10 cycles is assumed for this analysis.
We also extended the Wattch power models to account for the
addition of extra pipeline stages.

IV. EXPERIMENTS

A. Benchmarks

We use the Mediabench[15] and Spec CPU2000[24] bench-
marks in our experiments. We select eight applications
from each suite: adpcm, epic, g721, gsm, jpeg, mesa,
mpeg, rasta from Mediabench and bzip2, gap, mcf, parser,
vpr, ammp, art, equake from Spec2000. Of the Spec2000
suite, five (bzip2,gap,mcf,parser,vpr) are Integer, while three
(ammp,art,equake) are Floating Point benchmarks. We run
all Mediabench applications to completion. For the Spec
CPU2000 benchmarks we skip past the initialization stage and
simulate the next 1 billion instructions using the reference
input set. To skip, we fast-forward by the number of instruc-
tions as prescribed by Sair et al. [22] in their Spec CPU2000
initialization segment analysis. If the prescribed number is less
than 1 billion, we fast-forward by 1 billion instructions.

B. Baseline Results

We first present our results for the baseline case. See
Figure 6a for the Spec 2000 applications. For the Spec
2000 benchmarks in this architectural configuration, compiler
IPC-estimation driven front-end throttling yields excellent
results: on the average, we get 8% processor energy savings
with a performance degradation of 1.4%. As shown in Figure
6b, for the Mediabench applications we get 11.3% average
energy savings, however this comes at the price of an average
4.9% performance degradation. This is due to the fact that
multimedia programs have typically a higher ILP than general
purpose applications such as Spec 2000: although the low
IPC estimated instructions are stalled at the issue queue, later
and higher IPC instructions could have all their operands
available and issued out-of-order if there is sufficient ILP
available. This implies that for this configuration running
media benchmarks, a coarser-granularity scheme or a hybrid
static/dynamic heuristic could yield better results.

To present how fetch-throttling saves resources, we include
our findings on the percentage decrease of the fetch and
instruction queue occupancy. For Mediabench and Spec2000,
on average, the time that the queues are full is decreased
by 28.6% and 14.7% for fetch; and 17.2% and 7.7% for
issue, respectively. The average queue size is decreased by
19.2% and 10.4% for fetch; and 4.1% and 2.0% for issue,
respectively. Notice that the front-end throttling scheme
decreases the average queue occupancy of the back-end issue
queue as well.

We now examine the percentage of energy savings per
processor block: see Figure 7. As expected, the block with
the highest overall savings is the fetch stage. However, note
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that even the issue stage benefits from fetch-throttling.

C. Comparison With a Dynamic-Only Architectural Scheme

We now compare Cool-Fetch to two previously pro-
posed microarchitectural-level front-end throttling schemes:
Decode/Commit Rate (DCR) and Dependence-Based (DEP)
heuristics by Baniasadi et al. [6]. Both DCR and DEP are
also fine-grained schemes; however they solely rely on dy-
namic information. DCR throttles fetch when the number of
instructions passing through decode exceeds significantly the
number of instructions that commit. As such DCR exposes
a purely dynamic property by inhibiting fetch during branch
mispredictions. DEP analyzes the decoded instructions every
cycle and throttles fetch if the number of dependencies exceeds
a threshold of half the decode width. Similar to cool-fetch,
DEP is dependency-based, however DEP makes use of run-
time information while Cool-Fetch utilizes only compile-time
information. We implemented DCR and DEP following the
guidelines in [6]. The performance results are given in Figure
8. By contrast with DCR and DEP, Cool-Fetch substantially
preserves the original performance of the applications. The

energy results in Figure 9 indicate that on the average,
Cool-Fetch is as energy-efficient as DCR. However, for some
applications such as the ADPCM, DCR saves more energy.
Note that this energy savings comes at the expense of perfor-
mance, i.e., DCR trades off performance for energy. Compared
to Cool-Fetch, DEP saves more energy however trades off
performance.

D. Sensitivity Analysis

In this section, we examine the impact of resource and
control dependencies on our Cool-fetch. We start with resource
dependencies and analyze the effects of cache misses. Then,
we proceed to another resource dependency and experiment
with a smaller instruction queue size. Finally, we test the
impact of using a larger branch predictor and also present
an extended pipeline experiment which is essentially a test of
control dependencies since it amplifies branch misprediction
penalties. We now describe the results of each experiment in
turn.

One would expect that since our energy-saving heuristic
depends on a static approach, dynamic program behavior such
as cache misses would dilute the efficiency of our method.
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Fig. 9. Energy Efficiency of Cool-Fetch versus DCR and DEP.

This is not the case for the test cases considered. In Table II,
we present the data cache miss rates for the Spec 2000
benchmarks. The results are in agreement with data gathered
from a recent Spec 2000 cache performance analysis [10].
Consider the very high miss rates for the MCF, AMMP and
ART. This suggests that extraction of available ILP is affected
by dynamic memory performance in those benchmarks. Yet,
as seen from Figure 6b, the performance degradation due to
our scheme for those applications is not worse compared to
other, lower miss-rate, applications.

Benchmark Rate Benchmark Rate
VPR 1.1 PARSER 1.5
MCF 29.2 AMMP 14.3
ART 16.8 EQUAKE 1.1
GAP 0.3 BZIP2 2.0

TABLE II
MISS RATES FOR THE BASELINE L1 DATA-CACHE (128K, 4 WAY)

We now present the results for more constrained resources.
In Figure 10, the fetch and instruction queues are 8 and 32

instructions, respectively. For the Spec 2000 benchmarks, we
again get excellent results: 6.13% energy savings with 0.37%
performance penalty. For the Ammp and Bzip2 applications,
we even have a slight performance gain with our compiler-
directed throttling heuristic. By fetch-throttling at times of
low-ILP, the branch prediction can be more effective. Indeed,
for those applications the ratio of committed to fetched in-
structions is higher for the throttled configuration. This in turn
leads to slightly increased performance. For the multimedia
applications, we achieve good results for this configuration:
8.5% average energy savings with a 1.3% performance penalty.
To check the narrow-issue case, we also replicated our exper-
iments for a 4-way issue configuration, the results are similar
and not included here for the sake of brevity.

For branch mispredictions, we experimented with a larger
and better hybrid branch predictor (64K bimodal + 64K
Gshare with 64K selector), even though the 2K bimodal
predictor had good prediction rates for the selected Spec2000
benchmarks (with the exception of Equake which had a 77%
rate).Compared with the unthrottled case with the same branch
predictor configuration, the 2K bimodal predictor results in
1.4% average performance degradation and 8% energy sav-
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Fig. 10. Compiler IPC-estimation driven fetch throttling for smaller fetch and instruction queues

ings, while the hybrid predictor has 1% performance degrada-
tion and 7.5% energy savings.

As discussed before, we analyzed the impact of increasing
the pipeline depth to 11. The results are shown in Figure
11. The deeper pipeline allows an exploration for different
threshold and duration parameters. Figure 11a and 11b show
the case with a throttling threshold of 2 and duration of 1
cycles. Figure 11c and 11d are for a threshold of 2 and
an expanded throttling duration of 2 cycles. Figure 11e and
11f show the impact of using a throttling duration of 1 cycle,
but a threshold value of 3. There are interesting tradeoffs
here. The 1 cycle throttling duration case gives the least
performance degradation but with modest energy savings. The
2 cycle duration case has the highest energy savings, however
the performance penalty is larger, especially for the media
applications. The threshold of 3 and delay of 1 cycle gives
good energy savings results with a small drop in performance,
clearly this case is the optimum among the three policies
studied. The throttling duration of 2 cycles is long for wide-
issue architectures, and requires substantial changes to the
throttling logic. However, using the higher threshold of 3 with
a duration of 1 cycle requires minimal change to throttling
logic and is a better match for a deeper pipeline.

V. PREVIOUS WORK

Previous analyses of limits of available ILP reported ei-
ther pessimistic or optimistic results. The pessimistic camp
includes the work of Wall [27], who assumes a processor with
perfect memory disambiguation, perfect register renaming,
unlimited fetch bandwidth and a large number of functional
units. For a wide range of benchmarks, this processor achieves
a maximum speedup of only about 7 times that of a realistic
baseline processor. On the other hand, Nicolau and Fisher [20]
are in the optimistic camp: they report that three digit IPC
values are achievable for some loop-dominated applications.

IPC estimation for superscalar processors is in some ways
orthogonal to compiler-level dependence analysis for instruc-
tion scheduling in VLIW processors. For VLIW proces-
sors, the compiler statically and non-speculatively determines

dependence-free instructions that are then bundled into a long
instruction. The literature for VLIW compilers is vast, for the
sake of brevity we refer the reader to Schlansker et al. [23]
for compiler-architecture interaction techniques which achieve
high levels of ILP in VLIW processors. IPC estimation is
similar to superword-level-parallelism [14] in the sense that
it can be profitable when inherent ILP is scarce.

Energy reduction through ILP monitoring is a fertile re-
search area. Most approaches use hardware-based heuristics
to predict ILP behavior based on past profiling information.
This dynamic-only estimation is then used to drive a throttling,
gating or resource-resizing mechanism to save energy. The
work can be divided into two broad categories: front-end and
back-end methods. Front-end techniques focus on the fetch
and decode block, i.e., the earlier stages of the pipeline. The
back-end methods, on the other hand, utilize the later stages,
i.e., the issue stage. Here, we focus on the front-end.

An early example for front-end techniques is the pipeline
gating work of Manne et al. [17]. The authors inhibit spec-
ulative execution when such execution is highly likely to
fail. They analyze when a branch is likely to mispredict and
exclude wrong-path instructions from being fetched into the
pipeline. Their results show a 38% reduction in wrong-path
executions with a 1% performance loss. A more recent work
by Parikh et al. [21] also examines power issues related to
branch prediction. A key observation of the paper is that
chip-wide energy consumption could be reduced by improving
branch prediction accuracy even if this leads to spending more
power in the branch unit. An alternative front-end approach
is fetch/decode throttling by Baniasadi et al. [6]. This fine-
grained approach utilizes the information passing through each
pipeline stage to estimate the ILP. Based on this information,
the fetch/decode stage is stalled when insufficient parallelism
exists. However, as also expressed by the authors, traffic per
pipeline stage is used as an indirect, approximate, metric of
power dissipation.

To the best of our knowledge, there have been no efforts
on incorporating compiler-driven static-only techniques for
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Fig. 11. Results for 11-stage pipeline.

determining ILP for power and energy savings. Marculescu
[18] proposes a dynamic compiler-assisted technique that
adaptively selects the number of instructions to be fetched and
executed in parallel. She employs a profile-driven methodol-
ogy to find the optimal number of instructions to be executed
in parallel for each basic block. However, this requires preex-
ecution of the program for n times to gather profiling data for

each basic block, where n is the maximum available fetch or
execution rate. The granularity of the approach is at the basic
block level, consequently there is a single fetch and execute
rate per block.



VI. SUMMARY

We have shown in this paper that compiler-driven static
IPC estimation is a powerful approach for achieving chipwise
energy savings in superscalar out-of-issue processors. We
report up to 15% processor energy savings with Cool-Fetch.
The impact on performance is minimal and depending on
the application, the method can even lead to performance
improvements. We include the power dissipation overhead of
our technique in experiments across a wide spectrum of archi-
tectural configurations. We find that the efficiency of our static
technique is quite stable in the presence of dynamic program
behavior such as cache misses and branch mispredictions.
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