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ABSTRACT
Aggressive hardware prefetching often significantly increases
energy consumption in the memory system. Experiments
show that a major fraction of prefetching related energy
degradation is due to the hardware history table related
energy costs. In this paper, we present PARE, a Power-
Aware pRefetching Engine that uses a newly designed in-
dexed hardware history table. Compared to the conven-
tional single table design, the new prefetching table con-
sumes 7-11X less power per access. With the help of compiler-
based location-set analysis, we show that the proposed PARE
design improves energy consumption by as much as 40% in
the data memory systems in 70-nm BTPM processor de-
signs.

Categories and Subject Descriptors: B.3.2 [MEMORY
STRUCTURES]: Design Styles; C.3 [SPECIAL-PURPOSE
AND APPLICATION-BASED SYSTEMS].

General Terms: Design, Experimentation, Performance.

Keywords: Data Prefetching, Prefetch Engine, Low Power,
Energy Efficiency.

1. INTRODUCTION
Data prefetching is one of the successful techniques to

bridge the speed gap between processor and memory system.
Although considerable research [16, 3, 13, 14, 5, 11, 9, 10]
has been focused on improving the performance of prefetch-
ing mechanisms, the impact of prefetching techniques on
processor energy efficiency has not yet been fully investi-
gated.

In our previous work [7, 6], we have found that while
aggressive prefetching techniques often help to improve per-
formance, they could increase memory system energy con-
sumption very significantly.

Hardware prefetching requires the help of a history ta-
ble to record recent memory access instructions and set up
relationships between them in order to make prefetching de-
cisions and calculate prefetching addresses. The history ta-
bles are usually pretty large (normally 64-128 entries) [3,
13]. When implemented as a fully-associative CAM table,
the energy cost of each table lookup or update operation
could cost the amount of energy which is comparable to
a read operation of a low-power cache. To make accurate
prefetching decisions, the history table is accessed very fre-
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quently to update the recent information on all relevant load
instructions, which makes this part of the energy overhead
very significant.

In this paper, we introduce PARE - a new Power-Aware
pRefetching Engine with a novel design of an indexed hard-
ware history table. PARE is focused on improving the power-
efficiency of hardware-based data prefetching. We show the
detailed design of PARE for one hardware prefetching tech-
nique and compare its power dissipation with the currently
used fully-associative table design. We show that with the
help of compile-time location-set analysis [15], we can di-
vide the memory accesses into different relationship groups,
with each group consisting of memory accesses visiting only
closely related location-sets. The compiler generated group
numbers allow us to use the indexed history table in PARE.

In the proposed prefetch history table, we divide the total
entries into multiple (e.g., 16 or more) smaller tables. Each
memory access will be directed to one of the tables upon
entering the prefetching engine according to their group
numbers provided by the compiler. The prefetching engine
will update the information within the group and will make
prefetching decisions solely based on the information within
this group. The compile-time location-set analysis is utilized
to ensure that no information will be lost due to the parti-
tioning of memory accesses. We can reduce the power con-
sumption of each access to the prefetching tables by 7-11X
with the proposed technique based on our HSPICE simula-
tion.

To estimate power consumption in the memory system,
we use state-of-the-art low-power cache circuits and simu-
late them using HSPICE. The SimpleScalar [4] simulation
tool has been modified to implement the hardware prefetch-
ing technique and collect statistics on performance as well
as switching activity in the memory system. The compiler
passes are implemented using the SUIF infrastructure [17].
Our experiments show that the proposed technique improves
the energy consumption by as much as 40% in the data
memory system for a set of general-purpose programs. Our
evaluation is based on 70-nm BPTM technology node and
accounts for both active and leakage power.

The rest of this paper is organized as follows. Section 2 de-
scribes the energy overhead of data prefetching. The PARE
power-aware prefetching engine is presented in Section 3.
Section 4 gives an overview of the location set based group
analysis. Section 5 presents the experimental assumptions.
Section 6 shows the simulation results and we conclude with
Section 7.
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Figure 1: Performance speedup for different bench-
marks.

2. MOTIVATION
In our previous studies [7, 6], we have evaluated the en-

ergy perspective of both hardware and software based data
prefetching techniques. We have found that while aggressive
prefetching techniques often help to improve performance,
in most of the applications, they significantly increase the
total energy consumption.

One of the techniques which produces the best perfor-
mance speedup while resulting in the worst energy consump-
tion is the combined stride and pointer prefetching tech-
nique [7]. The combined prefetching technique integrates
the benefits from both stride prefetching [3] and dependence-
based prefetching [13], such that it works on general-purpose
programs that often use both array and pointer structures.

The performance improvement of the combined prefetch-
ing technique is shown in Figure 1. The first five bench-
marks are from SPEC2000 benchmarks; the last five are
Olden benchmarks which contain many pointer structures.

We can see from the figure the combined prefetching achieves
a performance speedup averaging about 40% and it works
consistently among all the benchmarks, including both array
and pointer intensive programs.

However, hardware prefetching requires the help of his-
tory tables to record the recent memory access instructions
and set up relationships between them in order to make
prefetching decisions and calculate prefetching addresses.
To achieve the prefetching benefit on both array-intensive
and pointer-intensive programs, combined prefetching has
to act aggressively, accessing the prefetching history table
more frequently and issuing more prefetching requests. The
naive design of the combined prefetching technique would
use the hardware tables of both stride prefetching and de-
pendence prefetching, simply by putting them together and
accessing both of them. Instead, to make fair assumptions
in a power-efficient system, we use an integrated 64-entry
table as our baseline, which is shown later in Section 3. The
integrated table already utilizes some of the low-power fea-
tures as we will show later, but it is still energy hungry be-
cause of its large size and high associativity. As opposed to
caches where banking is used to reduce power consumption,
in prefetching all entries have to be searched at runtime.

We calculate the total energy consumption in the mem-
ory system for the prefetching technique based on HSPICE
simulation. The results are shown in Figure 2: we show the
energy breakdown (from bottom to top for each bar) for L1
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Figure 2: Total energy consumption for cache and
prefetching history table.

dynamic energy, L1 leakage, L2 dynamic energy, L2 leakage,
L1 tag lookups due to prefetching, and prefetch hardware
table accesses.

The results in Figure 2 show that power consumption in-
creases for the combined prefetching by more than 50% for
many applications. This is mainly due to the prefetch table
accesses and the extra L1 tag lookups due to prefetching.
Note that a low power L1 data cache has a banked design
that makes its CAM tag significantly more power efficient
(e.g., 32-entry with 23 bits) during an access compared to
the prefetching history table (64 entry by 32 bits as will be
shown). The prefetch table accesses account for more than
70% of the total prefetching related energy overhead, and
is the component that we are targeting to improve in this
paper.

3. POWER-AWARE PREFETCHING DESIGN
As we mentioned earlier, the combined stride and pointer

prefetching technique [7] integrates the mechanisms from
both stride prefetching [3] and dependence-based prefetch-
ing [13].

Stride prefetching captures the static strides between mem-
ory accesses (mainly array accesses), and requires a history
table to record the address of the instruction (PC), previ-
ously accessed address, and the predicted stride. In compar-
ison, the dependence-based prefetching requires two history
tables to record the potential candidates of instructions and
the correlations which include PC, previously generated ad-
dresses, and predicted offset values.

As we will show later, the tables for both techniques could
be combined together into a single table, each entry at-
tached with one bit to indicate the prefetching type. We
will also use two bits to indicate the prefetching status,
which will help us to track whether the relationship is steady
(status>1) or not. Prefetching requests will be issued only
after the relationship is established, i.e., it is steady.

Next, we will show the design of our baseline prefetching
history table, which is a 64-entry fully-associative table with
many circuit-level low-power features. Following that we
present the design of the proposed indexed history table for
PARE, and compare the power dissipation, including both
dynamic and leakage, of the two designs.

3.1 Baseline History Table Design
The baseline prefetching table design is a 64-entry fully-

associative table shown in Figure 3. In each table entry,



Figure 3: The baseline design of hardware prefetch
table.

we store a 32-bit program counter (the address of the in-
struction), the lower 16 bits of the previously used memory
address (we do not need to store the whole 32 bits because
of the locality property in prefetching). We also use one bit
to indicate the prefetching type and two bits for status, as
mentioned previously. Finally, each entry also contains the
lower 12 bits of the predicted stride/offset value.

In our design, we use Content Addressable Memory (CAM)
for the PCs in the table, because CAM provides a fast and
power-efficient data search function, accessing data by its
content rather than its memory location.

The memory array of CAM cells logically consists of 64 by
32 bits. The rest of the history table is implemented using
SRAM arrays. During a search operation, the reference data
are driven to and compared in parallel with all locations in
the CAM array. Depending on the matching tag, one of the
wordlines in the SRAM array is selected and read out.

The prefetching engine will update the table for each load
instruction and check whether steady prefetching relation-
ships have been established. If there exists a steady relation,
the prefetching address will be calculated according to the
relation and data stored in the history table. A prefetching
request will be issued in the following cycle.

3.2 PARE History Table Design
Each access to the table in Figure 3 still consumes signifi-

cant power because all 64 CAM entries are activated during
a search operation. We could reduce the power dissipation
in two ways: reducing the size of each entry and partitioning
the large table into multiple smaller tables.

First, because of the program locality property, we do not
need the whole 32 bits PC to distinguish between different
memory access instructions. If we use only the lower 16
bits of the PC, we could reduce roughly half of the power
consumed by each CAM access.

Next, we break up the whole history table into 16 smaller
tables, each containing only 4 entries, as shown in Figure 4.
Each memory access will be directed to one of the smaller ta-
bles according to their group numbers provided by the com-
piler when they enter the prefetching engine . The prefetch-
ing engine will update the information within the group and
will make prefetching decisions solely based on the informa-
tion within this group. The compile-time location-set analy-
sis is utilized to ensure that no information will be lost due

to the partitioning of memory accesses. The group num-
ber can be accommodated in future ISAs that target energy
efficiency and can be added easily in VLIW/EPIC type of
designs. We also expect that many optimizations that would
use compiler hints could be combined to reduce the impact
on the ISA. The approach can reduce power significantly
even with fewer tables (requiring fewer bits in the ISA) and
could also be implemented in current ISAs by using some
bits from the offset. Embedded ISAs like ARM that have 4
bits for predication in each instruction could trade off less
predication bits (or none) with perhaps more bits used for
compiler inserted hints. The compiler analysis will be pre-
sented in the next section.

In the PARE history table shown in Figure 4, during a
search operation, only one of the 16 tables will be activated
based on the group number provided by the compiler. We
only perform the CAM search within the activated table,
which is a fully-associative 4-entry CAM array.

The schematic of each small table is shown in Figure 5.
Each small table consists of a 4x16 bits CAM array contain-
ing the program counter, a sense amplifier and a valid bit
for each CAM row, and the SRAM array on the right which
contains the data.

We use one of the most power-efficient CAM cell design
proposed in [18]. The cell uses ten transistors that contain
an SRAM cell and a dynamic XOR gate used for comparison.
It separates search bitlines from the write bitlines in order to
reduce the capacitance switched during a search operation.

For the row sense amplifier, we are using a single ended
alpha latch to sense the match line during the search in the
CAM array. The activation timing of the sense amplifier was
determined with the case where only one bit in the word has
a mismatch state.

Each word has the valid bit which indicates whether the
data stored in the word will be used in search operations. A
match line and a single ended sense amplifier are associated
with each word. A hit/miss signal is also generated: its
high state indicating a hit or multiple hits and the low state
indicating no hits or miss.

Finally, the SRAM array is the memory block that holds
the data. Low-power memory designs typically use a six-
transistor (6T) SRAM cell. Writes are performed differen-
tially with full rail voltage swings.

The power dissipation for each successful search is the
power consumed in the decoder, CAM search and SRAM
read. The power consumed in a CAM search includes the
power in the match lines and search lines, the sense ampli-
fiers and the valid bits.

The new hardware prefetch table has the following bene-
fits compared to the baseline design:

• The dynamic power consumption is dramatically re-
duced because of the partitioning into 16 smaller ta-
bles;

• The CAM cell power is also reduced because we use
only the lower 16 bits of the PC instead of the whole
32 bits;

• Another benefit of the new table is that since the table
is very small (4-entry), we do not need a column sense
amplifier. This also helps to reduce the total power
consumed.

However, some overhead is also introduced by the new



Figure 4: The overall organization of our hardware prefetch table.

Figure 5: The schematic for each small history table.

design. First, we need an address decoder to select one
of the 16 tables. The total leakage power is increased (in a
relative sense only) because while one of the smaller tables is
active, the remaining 15 tables will be leaking. Fortunately,
as we will show next, the new PARE design overcomes all
these disadvantages.

3.3 Power Evaluation
The hardware history table was designed using the 70-

nm BPTM technology and simulated using HSPICE with
a supply voltage of 1V. Both leakage and dynamic power
are measured. Figure 6 summarizes our results showing the
breakdown of dynamic and leakage power at different tem-
peratures for both baseline and PARE history table designs.

From the figure, we can see that leakage power is very
sensitive to temperature. The leakage power, which is ini-
tially 10% of the total power for the PARE design at room
temperature (25�), increases up to 50% as the temperature
goes up to 100�. This is because scaling and higher tem-
perature cause subthreshold leakage currents to become a
large component of the total power dissipation.

The new PARE table design proves to be much more
power efficient than the baseline design. Although the leak-
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Figure 6: Power consumption for each history table
access for PARE and baseline designs at different
temperatures(�).

age power consumption of PARE has more than doubled
compared to the baseline design (this is because a smaller
fraction of transistors are switching and a larger fraction are
idle), the dynamic power of PARE is reduced dramatically,
from 13mW to 1.05mW. As the result, the total power con-



sumption is reduced by 7-11X. For our simulation, we used
the power consumption result at 75�, which is the typical
temperature of a chip.

4. LOCATION-SET BASED GROUP ANA-
LYSIS

Due to space constraints, we cannot get into details of
the compiler analysis algorithms. We instead give a brief
overview of how it helps to partition the memory accesses
into different groups such that we can use the new proposed
PARE history table design.

Figure 7 shows the flow diagram of our compiler proce-
dures. SUIF compiler infrastructure [17] is used to perform
the analysis on intermediate files. Our location-set analysis
pass is performed after the high-level SUIF passes.

SUIF High-level Passes

.C .CPP Source Code

Location-set Based 
Group Analysis

Backend

Binaries (.exe)

Figure 7: The flow diagram for the compiler passes.

Location-set analysis is a compiler analysis similar to pointer
alias analysis [15]. By specifying locations for each memory
objects allocated by the program, a location set is calculated
for each memory instruction. A key difference in our work
is that we use an approximative runtime-biased analysis [8]
that has no restrictions in terms of complexity. Each loca-
tion set contains the set of possible memory locations which
could be accessed by the instruction.

The location-sets for all the memory accesses are grouped
based on their relationships and their potential effects on
the prefetching decision-making process. The reason why
we can group the memory accesses while not losing the ac-
curacy of prefetching is because of the regular properties of
the prefetching techniques: stride prefetching is based on the
relationship within an array structure, while dependence-
based pointer prefetching is based on the relationship be-
tween linked data structures.

The results of the location-set analysis, along with type
information captured during SUIF analysis, give us the abil-
ity to group the memory accesses which relate during the
prefetching decision-making process into the same group.
For example, memory instructions which access the same
location-set will be put in the same group, while the in-
structions accessing the same pointer structure will also be
put in the same group.

In our analysis, group numbers are assigned within each
procedure, and will be reused on a round-robin basis if nec-
essary. The group numbers then will be written as annota-
tions to the instructions and transferred to the SimpleScalar
simulator via the binaries.

5. EXPERIMENTAL ASSUMPTIONS

5.1 Experimental Framework
We implement the hardware prefetching techniques by

modifying the SimpleScalar [4] simulator. We use SUIF [17]
to implement the compiler passes for PARE, generating an-
notations of group information which we later transfer to
assembly codes. The binaries input to the SimpleScalar
simulator are created using a native Alpha assembler. The
parameters we use for the simulations are listed in Table 1.

Table 1: Baseline parameters
Processor speed 1GHz
Issue 4-way, out-of-order
L1 D-cache 32KB, CAM-tag, 32-way, 32bytes

cache line
L1 I-cache 32KB, 2-way, 32bytes cache line
L1 cache latency 1 cycle
L2 cache unified, 256KB, 4-way, 64bytes

cache line
L2 cache latency 12 cycle
Memory latency 100 cycles latency + 10 cycles/word

The benchmarks evaluated are listed in Table 2. The
SPEC2000 benchmarks [1] use mostly array-based data struc-
tures, while the Olden benchmark suite [12] contains pointer-
intensive programs that make substantial use of linked data
structures. We randomly select a total of ten benchmark
applications, five from SPEC2000 and five from Olden. For
SPEC2000 benchmarks, we fast forward the first one billion
instructions and then simulate the next 100 million instruc-
tions. The Olden benchmarks are simulated to completion
except for one (perimeter), since they complete in relatively
short time.

Table 2: SPEC2000 & Olden benchmarks
Benchmark Description

SPEC2000
181.mcf Combinatorial Optimization
197.parser Word Processing
179.art Image Recognition / Neural Nets
256.bzip2 Compression
175.vpr Versatile Place and Route

Olden
bh Barnes & Hut N-body Algorithm
em3d Electromagnetic Wave Propagation
health Colombian Health-Care Simulation
mst Minimum Spanning Tree
perimeter Perimeters of Regions in Images

5.2 Cache Energy Modeling
To accurately estimate power and energy consumption in

the L1 and L2 caches, we perform circuit-level simulations
using HSPICE. We base our design on a recently proposed
low-power circuit [18] that we implement in 70-nm BPTM
technology. Our L1 cache includes the following low-power
features: low-swing bitlines, local word-line, CAM-based



Table 3: Cache configuration and power consump-
tion

Parameter L1 L2

size 32KB 256KB
tag array CAM-based RAM-based
associativity 32-way 4-way
bank size 1KB 4KB
# of banks 32 64
cache line 32B 64B

Power (mW)

tag 6.5 6.3
read 9.5 100.5
write 10.3 118.6
leakage 3.1 23.0
reduced leakage 0.8 1.5
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Figure 8: Energy consumption in the memory sys-
tem after applying different energy-aware prefetch-
ing schemes.

tags, separate search lines, and a banked architecture. The
L2 cache we evaluate is based on a banked RAM-tag design.

As we expect that implementations in 70-nm technology
would have significant leakage, we apply a recently proposed
circuit-level leakage reduction technique called asymmetric
SRAM cells [2]. This is necessary because otherwise our con-
clusions would be skewed due to very high leakage power.
The speed enhanced cell in [2] has been shown to reduce
L1 data cache leakage by 3.8X for SPEC2000 benchmarks
with no impact on performance. For L2 caches, we use the
leakage enhanced cell which increases the read time by 5%,
but can reduce leakage power by at least 6X. In our eval-
uation, we assume speed-enhanced cells for L1 and leakage
enhanced cells for L2 data caches, by applying the different
asymmetric cell techniques respectively.

The power consumption for our L1 and L2 caches are
shown in Table 3.

6. RESULTS
We integrate PARE into the SimpleScalar simulator and

calculate the energy consumption statistics based on the
simulation.

Figure 8 shows the energy reduction with PARE applied.
We can see that we could reduce more than 70% of the
prefetching energy overhead in the data memory system for

most of the applications. Overall, the energy consumption is
improved by almost 40% in the data memory system com-
pared to the baseline prefetching engine. Along with the
leakage energy reduction due to the performance speedup
of prefetching, we can see that the prefetching impact on
energy is reduced to negligible or even improved for some
applications with PARE applied.

7. CONCLUSION
This paper proposes a power-efficient prefetching engine

called PARE to improve the power-efficiency of hardware-
based data prefetching mechanisms. Our experiments show
that the proposed techniques improve the data memory sys-
tem energy consumption by as much as 40%. Although we
have implemented PARE on one specific data prefetching
technique, we believe that PARE could be applied on other
hardware prefetching techniques as well.
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