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Abstract. Compiler-enabled memory systems have been successful in
reducing chip energy consumption. A major challenge lies in their appli-
cability in the context of complex pointer-intensive programs. State-of-
the-art high precision pointer analysis techniques have limitations when
applied to such programs, and therefore have restricted use. This paper
describes runtime biased pointer reuse analysis to capture the behavior
of pointers in programs of arbitrary complexity. The proposed technique
is runtime biased and speculative in the sense that the possible targets
for each pointer access are statically predicted based on the likelihood
of their occurrence at runtime, rather than conservative static analy-
sis alone. This idea implemented as a flow-sensitive dataflow analysis
enables high precision in capturing pointer behavior, reduces complex-
ity, and extends the approach to arbitrary programs. Besides memory
accesses with good reuse/locality, the technique identifies irregular ac-
cesses that typically result in energy and performance penalties when
managed statically. The approach is validated in the context of a com-
piler managed memory system targeting energy efficiency. On a suite
of pointer-intensive benchmarks, the techniques increase the fraction of
memory accesses that can be mapped statically to energy efficient mem-
ory access paths by 7-72%, giving a 4-31% additional L1 data cache
energy reduction.

1 Introduction

The memory system, including caches, consumes a significant fraction of the
total system power. For example, the caches and translation look-aside buffers
(TLB) combined consume 23% of the total power in the Alpha 21264 [7], and
the caches alone use 42% of the power in the StrongARM 110 [8]. Recent studies
have proposed compiler-enabled cache designs [2, 12, 14] to improve cache per-
formance as well as energy consumption. A major challenge, however, is their
applicability when dealing with complex pointer-intensive programs. This paper
presents a new approach to deal with complex pointer-intensive programs in
such schemes based on the idea of runtime biased pointer reuse analysis. In ad-
dition to compiler-enabled memory systems, applications such as compiler-based
prefetching, software-based memory dependence speculation, and parallelization,
could also significantly benefit from the techniques presented in this paper.



Many researchers have focused on program locality/reuse analysis for array-
based memory accesses [9, 15, 16]. In general, array accesses are more regular
than pointer-based memory accesses because arrays are normally accessed se-
quentially while pointers typically have more complicated behavior. Array based
accesses are also relatively easy to deal with as type information is available to
guide the analysis.

Intensive use of pointers makes however program analysis difficult since a
pointer may point to different locations during execution time; the set of all
locations a pointer can access at runtime is typically referred to as the location
set. This difficulty is further accentuated in the context of large and/or complex
programs. For example, more precise dataflow-based implementations of pointer
analysis have limitations (e.g., often cannot complete analysis) when used for
large programs or when special constructs such as pointer based calls, recursion,
or library calls are found in the program. The less precise alias analysis techniques
(e.g., those that are flow-insensitive) have lower complexities but don’t provide
precise enough static information about pointer location sets.

Our objective is to develop new techniques to capture pointer behavior that
can be used to analyze complex applications with no restrictions, while provid-
ing good precision. The idea is to determine pointer behavior by capturing the
frequent locations for each pointer rather than all the locations as conservative
analysis would do. Predicted pointer reuse is therefore runtime biased and specu-
lative in the sense that the possible targets for each pointer access are statically
predicted/speculated based on the likelihood of their occurrence at run-time.
The approach enables lower complexity and possibly higher precision analysis
than traditional dataflow based approaches because locations predicted to be
infrequently accessed are not considered as possible targets. The approach is ap-
plicable in all architecture optimizations that use some kind of compiler-exposed
speculation hardware and when absolute correctness of static information lever-
aged is not necessary. This includes for example compiler managed energy-aware
memory systems, compiler managed prefetching, and speculative parallelization
and synchronization - these applications by their design would benefit from pre-
cise memory behavior information and would tolerate occasional incorrect static
control information.

This paper shows the application of the proposed pointer techniques to an
energy-efficient compiler-enabled memory management system published previ-
ously, called Cool-Mem [2]. The Cool-Mem architecture achieves energy reduc-
tion by implementing energy efficient statically managed access paths in addi-
tion to the conventional ones. The compiler decides which path is used based
on static information extracted. For accesses that reuse the same cache line,
cache mapping information is maintained to help eliminate redundancy in cache
disambiguation. Whenever the compiler can correctly channel data memory ac-
cesses to the static access path, significant energy reduction is achieved; the
statically managed access path does not need Tag access and associative lookup
in RAM-Tag caches, and Tag access in CAM-Tag caches.



We show that the Cool-Mem architecture, if extended with our techniques,
is able to handle pointer based accesses and achieve up to 30% additional energy
savings in the L1 data cache.

The rest of this paper is structured as follows. Section 2 presents the runtime
biased compiler analysis techniques, including pointer analysis, distance analysis,
and reuse analysis algorithms. Following this, Sect. 3 provides an overview of the
compiler-enabled memory framework used for simulation and Sect. 4 shows the
experimental framework. Finally, Sect. 5 gives the experimental results gathered
through simulation, and we conclude with Sect. 6.

2 Compiler Analysis

The runtime biased (RB) pointer reuse analysis can be separated into a series
of three steps: RB pointer analysis, RB distance analysis, and RB reuse analysis.

RB Pointer Analysis is first applied in order to gather basic pointer informa-
tion needed to predict pointer access patterns. A flow-sensitive dataflow scheme
is used in our implementation. Flow-sensitive analysis maintains high precision
(i.e., the location set of each pointer access is determined in a flow-sensitive man-
ner even if based on the same variable). Our analysis is guided by reevaluating,
at each pointer dereference point, the (likely) runtime frequency of each location
a pointer can point to. For example, possible locations that are from definitions
in outer loop-nests are marked or not included when the pointer is dereferenced
in inner loops and if at least one new location has been defined in the inner loop.
Conventional analysis would not distinguish between these locations.

Precise conventional pointer analysis usually requires that the program in-
cludes all its source codes, for all the procedures, including static libraries. Oth-
erwise, the analysis cannot be performed. Precise conventional pointer analysis
is often used in program optimizations where conservative assumption must be
made - any speculation could result in incorrect execution.

In contrast, our approach does not require the same type of strict correctness.
If the behavior of a specific pointer cannot be inferred precisely, we can often
speculate or just ignore its effect. For example, if a points-to relation (or location)
cannot be inferred statically, we speculatively consider only the other locations
gathered in the pointer’s location set. We mark the location as undefined. When
assigning location sets for the same pointer at a later point in the CFG, one
could safely ignore/remove the undefined location in the set, if the probability of
the pointer accessing that location, at the new program point, is low (e.g., less
than 25% in our case).

The main steps of our RB pointer analysis algorithm are as follows: (1) build
a control-flow graph (CFG) of the computation, (2) analyze each basic block in
the CFG gradually building a PTG, (3) at the beginning of each basic block
merge location set information from previous basic blocks, (4) mark locations in
the location sets that are unlikely to occur at runtime, at the current program
point, as less frequent, (5) mark undefined locations or point-to relations; (6)



……
int *p;
int arr[100];

p = &arr;
for(… i …){

*p = i;
p += 1;

}

……
int *p;
int arr[10];

p = &arr;
for(… i …){

*p = i;
p += foo(i);

}

(a) (b)

Fig. 1. Distance analysis examples: (a) static stride (b) variable stride

repeat steps 2-5 until the PTG graph does not change (i.e., full convergence is
reached) or until the allowed number of iterations are reached.

Library calls that may modify pointer values and for which source codes are
not available are currently speculatively ignored. If a pointer is passed in as an
argument, its location set after the call-point in the caller procedure will be
marked as speculative, signaling that the location set of the pointer might be
incomplete after the call. In none of the programs we have analyzed we have
found library modified pointer behavior to be a considerable factor in gathering
precise pointer reuse information.

RB Distance Analysis gathers stride information for pointers changing across
loop iterations. This stride information is used to predict pointer-based memory
access patterns, and speculation is performed whenever the stride is not fixed. As
strides could change in function of the paths taken in the Control-Flow Graph
(CFG) of the loop body, only the most likely strides (based on static branch
prediction) are considered.

In the example shown in Fig. 1(a), the value of pointer p changes after each
iteration. In general, there are two ways to deal with this situation if implemented
as part of pointer analysis. Each element in the array structure could be treated
as a different location, or, another approach would be to treat the whole array
arr as a single location. The former is too complicated for compiler analysis
while the latter is not precise enough.

In our approach, as shown in Fig. 1(a), we first find the initial location for p.
Then, when we find out that p is changing for each iteration, we calculate the
distance (stride) between the current location and the location after modifica-
tion. If the distance is constant, we will use both the initial location and distance
to describe the behavior of the pointer.

Extracting stride information is not always easy. In Fig. 1(a), we can easily
calculate that the stride for pointer p is 4 bytes. However, for the example in
Fig. 1(b), the stride for pointer p is variable since we do not know what value



procedure foo() will return. In this case, we can use speculation based on static
information related to the location set to estimate the stride. For example, the
information we do know is (1) p points to array arr and (2) the size of array
arr is small. Based on this information, we can speculate that the stride of p is
small although we do not know the exact number.

Another example of stride prediction, as also mentioned earlier, is ignoring
strides that are less likely to occur at runtime based on static branch prediction.
Clearly, depending on which path is executed at runtime the stride of a pointer
might change across loop iterations, as not all the possible paths leading to that
pointer access are equally likely to occur.

RB Reuse Analysis attempts to discover those pointer accesses that have
reuse, i.e., refer to the same cache line. Reuse analysis uses the information
provided by the previous analyses to decide whether two pointer accesses refer to
the same cache line. Based on the reuse patterns, pointer accesses are partitioned
into reuse equivalence classes. Pointers in each equivalence class have a high
probability of referring to the same cache line during execution and will be
mapped through the static access path in the Cool-Mem system.

Reuse analysis for array-based accesses has been studied and used in [9, 15,
16]. For pointer-intensive programs, we use a classification scheme similar to
theirs, but we redefine it specifically in the context of pointer-based accesses.

1. Temporal Reuse: This is the case when a pointer is not changing during loop
iterations. This is the simplest case for loop-based accesses.

2. Self-Spatial Reuse: If a pointer is changing using a constant stride and the
stride is small enough, two or more consecutive accesses will refer to the
same cache line.

3. Group-Spatial Reuse: A group of pointers can share the same cache line
during each loop iteration even when they do not exhibit self-spatial reuse.

4. Simple-Spatial Reuse: This exists between two pointers that refer to the
same cache line but do not belong to any loop. Simple-spatial reuse is added
as a new reuse category because we find that this situation is important
for pointer-based programs although it is not as important for array-based
programs. The reason for this is that array structures are typically accessed
using loops, while pointer-based data structures are often accessed using
recursive functions.

Pointer-based memory accesses are partitioned into different reuse equiva-
lence classes based on the reuse classification and strides. A reuse equivalence
relation exists between two memory accesses if one of the above mentioned reuse
relations exists between them. Intuitively, each reuse equivalence class contains
those pointer accesses that have a good chance to access the same cache line.

Once we have the reuse equivalence classes, we use a reuse probability thresh-
old to decide which of the equivalence classes will likely have high cache line
reuse. All the accesses assigned to an equivalence class with a reuse probabil-
ity smaller than this threshold or not assigned to a class, will be regarded as



irregular. In our experiments, we choose the reuse threshold such that the stat-
ically estimated reuse misprediction rate is predicted to be smaller than 33%
(the overall misprediction rate could be much lower depending on the mixture
of equivalence classes, but could also be larger due to the speculative nature of
the information this analysis is based on).

After RB reuse analysis, all the accesses which fall into one of the four reuse
categories are regarded as having good reuse possibility. Pointer accesses which
have bad locality and small reuse chances are identified as irregular accesses.

3 Application:
Compiler-Managed Memory Systems

The results of run-time biased reuse analysis can be applied to general-purpose
compiler-enabled cache management systems. In this paper, we replicated a
compiler-enabled energy efficient cache management framework, Cool-Mem [2],
and extended it by incorporating our pointer reuse analysis techniques. We will
give a simple introduction of Cool-Mem architecture in this section, detail infor-
mation about Cool-Mem can be found in [2].

3.1 Cool-Mem Memory System

Figure 2 presents an overview of the Cool-Mem memory system, with integrated
static and dynamic access paths. Cool-Mem extends the conventional associative
cache lookup mechanism with simpler, direct addressing modes, in a virtually
tagged and indexed cache organization. This direct addressing mechanism elimi-
nates the associative tag-checks and data-array accesses. The compiler-managed
speculative direct addressing mechanisms uses the hotline registers. Static mis-
predictions are directed to the CAM based Tag-Cache, a structure storing cache
line addresses for the most recently accessed cache lines. Tag-Cache hits also
directly address the cache, and the conventional associative lookup mechanism
is used only on Tag-Cache misses.

The conventional associative lookup approach requires 4 parallel tag-checks
and data-array accesses(in a 4-way cache). Depending on the matching tag, one
of the 4 cache lines is selected and the rest discarded. Now for sequences of
accesses mapping to the same cache line, the conventional mechanism is highly
redundant: the same cache line and tag match on each access. Cool-Mem reduces
this redundancy by identifying at compile-time, access likely to lie in the same
cache line, and mapping them speculatively through one of the hotline registers
(step 1 in Fig. 2).

Different hotline compiler techniques are used to predict which cache accesses
are put into which hotline registers. A simple run-time comparison (step 2)
reveals if the static prediction is correct. The cache is directly accessed on correct
prediction (step 3), and the hotline register updated with the new information
on mis-predictions.
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Fig. 2. Cool-Mem Architecture

Another energy-efficient cache access path in Cool-Mem is the CAM-based
Tag-Cache. It is used both for static mis-prediction (hotline misses) and accesses
not mapped through the hotline registers, i.e. dynamic accesses (step 4). Hence
it serves the dual-role of complementing the compiler-mapped static accesses
by storing cache-line addresses recently replaced from the hotline registers, and
also saving cache energy for dynamic accesses; the cache is directly accessed on
Tag-Cache hits(step 3).

Although the Tag-Cache access is very quick, we assume that the Tag-Cache,
accessed on hotline misses, require another cycle, with an overall latency similar
to a regular cache access. A miss in the Tag-Cache implies that we fall back to
the conventional associative lookup mechanism with and additional cycle perfor-
mance overhead (step 5). The Tag-Cache is also updated with new information
on misses. As seen in Fig. 2, each Tag-Cache entry is exactly the same as a
hotline register, and performs the same functions, but dynamically.

3.2 Cool-Mem Compiler

Cool-Mem compiler is responsible for identifying groups of accesses likely to
map to the same cache-line, and mapping them through one of the hotline reg-
isters. Hotline passes are implemented in two different compiler techniques: (1)
Optimistic Hotlines, where the compiler tries to map all accesses through the



hotline registers, and (2) Conservative Hotlines, which maps a subset of the ac-
cesses that are more regular in nature and as a result, are likely to cause fewer
mis-predictions. The description of both algorithms can be found in [2].

Both the optimistic and conservative hotline approaches are not dealing with
pointer variables, because pointer information is unknown without pointer alias
analysis or points-to analysis. Runtime biased pointer reuse analysis results can
be applied easily in the context of the Cool-Mem architecture. Simply, pointer
accesses in reuse equivalence classes with reuse attributes larger than the reuse
threshold are mapped to static energy-saving cache access paths. At the same
time, irregular pointers identified during reuse analysis will be directed to regular
cache access paths to avoid energy and performance penalties.

4 Experimental Framework

The SUIF [13]/Machsuif [11] suite is used as our compiler infrastructure. RB
pointer and distance analysis is implemented as a SUIF pass which analyzes an
intermediate SUIF file and then writes the pointer and stride information back
as annotations. RB reuse analysis runs after the pointer analysis pass and writes
reuse equivalence class information to the SUIF intermediate file.

The source files are first compiled into SUIF code and merged into one file.
All high-level compiler analysis passes, including the pointer and reuse analysis
passes, operate at this stage. The annotations from SUIF files are propagated to
an Alpha binary file through the intermediate stages. We use the SimpleScalar [5]
simulator with Wattch [4] extensions for collecting performance and energy num-
bers. This simulator, capable of running statically linked alpha binaries, has been
modified to accommodate the Cool-Mem architecture.

We assume a 4-way in-order Alpha ISA compatible processor and 64 Kbyte 4-
way set-associative L1 caches, 0.18 micron technology, and 2.0V Vdd. We account
for all the introduced overheads and static mispredictions in the architecture as
described in [2].

We simulated a number of benchmarks during the selection process, including
SPEC 2000 [1], Olden pointer-intensive benchmark suite [10] and several bench-
marks used previously by the pointer analysis community [3, 6]. We chose seven
benchmarks (shown in Table 1) which contain at least 25% of pointer accesses
at runtime.

5 Results

In this section, we show experimental results for the above benchmarks, including
benchmark statistics as well as energy saving results collected using Wattch.

5.1 Regular vs. Irregular Pointers

Identifying those pointers which do not have good locality is important because
they normally result in energy and performance penalties when managed stati-
cally. Figure 3(a) shows the percentage of irregular pointers found during static



Table 1. Benchmarks used in simulation results.

Benchmark Source Description

backprop Austin Neural network training

em3d Olden Elect. magn. wave propag.

ft Austin Minimum spanning tree

ks Austin Graph Partition

08.main McGill Polygon rotation

mcf SPEC2000 Combinatorial optimization

09.vor McGill Voronoi diagrams
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Fig. 3. Regular versus irregular pointers: (a) runtime percentage of statically deter-
mined regular and irregular pointers; (b) Static misprediction rates of pointer accesses
when mapped to Cool-Mem’s static cache access path. Misprediction occurs when a
pointer that is predicted to have high reuse statically will not access the predicted
cache line at runtime.
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Fig. 4. Normalized L1 D-cache energy consumption.

compiler analysis. Different programs have a different portion of irregular point-
ers. In some of them, such as main and em3d, up to 99% of all the pointers are
predicted as regular. Other programs like ft have almost 80% irregular accesses.
Figure 3(b) shows the misprediction rate of the pointers predicted when mapped
to the static cache access path. The misprediction rate refers to the accesses that
do not point to the cache line predicted. Note that the misprediction rate for
irregular pointers is very high for most of the programs. It is at least twice the
misprediction rate of those pointers we identified as regular pointers. The only
exception is backprop, which operates on a relatively small data structure, such
that all the pointer accesses have very good locality. However, we can see that
the misprediction rate for irregular pointers in backprop is still much higher than
those of regular pointers.

We also show the misprediction rate for the case when all the pointer accesses
are mapped through the static path. Note that the misprediction rate is signifi-
cantly reduced by removing the irregular pointer accesses. For em3d, the overall
misprediction rate is reduced by almost 50% while identifying only 1.7% of all
the pointer accesses as irregular. We also identified almost 80% of all pointers
as irregular in ft, which have a misprediction rate greater than 95%.

5.2 Energy Savings

Figure 4 shows the energy consumption results which are normalized to the
unoptimized hardware baseline architecture. The baseline energy number, which
is shown as 100%, is the first bar. The second bar shows the normalized energy
consumption by applying the published Cool-Mem techniques without mapping
the pointer-based accesses through the statically managed cache access path.
Finally, the energy consumption number, which uses the results of our reuse
analysis for pointer-based accesses, is shown last. Compared to the optimization
which maps only array-based accesses, 4% to 31% extra energy reduction is



achieved on the L1 data cache energy consumption by mapping the pointer-based
memory accesses that are statically predicted as regular through the statically
managed cache access path.

6 Conclusion

Compiler-enabled cache management for pointer-intensive programs is difficult
because pointer analysis is difficult and sometimes even impossible for large or
complex programs. By applying the runtime biased pointer analysis techniques,
we can always complete analysis for any pointer-intensive program without any
constraints. The techniques proposed increase the fraction of memory accesses
that can be mapped statically to energy efficient cache access paths by 7-72%,
giving a 4-31% additional cache energy reduction in the L1 data cache.

Our future work includes further investigation experiments on the runtime
biased pointer analysis approach and applying the analysis to other compiler-
enabled techniques such as compiler-directed prefetching on pointer-intensive
codes.
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