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Abstract— The machinery of life operates on the complex 
interactions between genes and proteins. Attempts to capture 
these interactions have culminated into the study of Genetic 
Networks. Genetic defects lead to erroneous interactions, which in 
turn lead to diseases. For personalized treatment of these diseases, 
a careful analysis of Genetic Networks and a patient’s genetic data 
is required. In this work, we co-design a novel probabilistic AI 
model along with a reconfigurable architecture to enable 
personalized treatment for cancer patients. This approach enables 
a cost-effective and scalable solution for widespread use of 
personalized medicine. Our model offers interpretability and 
realistic confidences in its predictions, which is essential for 
medical applications. The resulting personalized inference on a 
dataset of 3k patients agrees with doctor’s treatment choices in 
80% of the cases. The other cases are diverging from the universal 
guideline, enabling individualized treatment options based on 
genetic data. Our architecture is validated on a hybrid SoC-FPGA 
platform which performs 25x faster than software, implemented 
on a 16-core Xeon workstation, while consuming 25x less power.  

Keywords— Computer Architecture, Reconfigurable 
Computing, SoC-FPGA, Probabilistic Computing, Bayesian 
Networks, Personalized Medicine, Interpretable AI, Genomics. 

I. INTRODUCTION 

This work focuses on the problem of discovering gene networks 
(GNs) and their application in determining treatment choices for 
breast cancer patients. Globally, breast cancer is the most 
common cancer in women with close to 1.7 million cases 
diagnosed annually. The average 5-year survival rate of stage 1 
(local) breast cancer is 98.5% but drops significantly to 84% and 
24% for stage 2 (regional) and stage 3 (distant), respectively[1]. 
Hence, an early diagnosis and treatment of breast cancer is 
crucial, which this work aims to impact. Decades of breast 
cancer research has culminated into a deep understanding of its 
various subtypes and has led to the formation of various GNs for 
breast cancer[2][3]. GNs, as shown in Fig. 1, are a compact 
representation of our understanding of the genetic basis of 
diseases[4]. Recent developments indicate that probabilistic AI 
models may be used to capture GN structure[5]. These AI 
models, such as Bayesian Networks (BNs), are based on 
probability theory and Bayesian statistics. They intrinsically 
support asking questions such as those in a personalized 
medicine context. They represent knowledge in an interpretable 
graph and can provide realistic confidences in their predictions, 
which is important for medical applications. Once a GN 
structure is discovered and modeled using probabilistic AI, it 
can be used to predict the likelihood that a certain patient has 
breast cancer based on their gene expression profile. 

Furthermore, it can also be used to infer the best possible 
treatment for a patient already diagnosed of cancer. 

Currently, this process is time-consuming, and expensive. A 
state-of-the-art algorithm performing a GN-based benchmark 
with 3000+ genes requires ~325 Xeon processors and ~170 
hours of runtime[6]. This is because, implementing probabilistic 
AI in software involves stochastic computations over several 
layers of abstraction, on circuits and architectures that are 
deterministic in nature.  Alternatively, personalized treatment 
choices are made by expert oncologists at a per-patient basis. 
Currently, only few institutions in the world have access to such 
enormous computing resources and expertise. Hence, for most 
cancer patients, the treatment choice is not personalized, but is 
generalized to factors such as age, gender, stage of cancer etc.  
These limitations can be overcome by designing architectures 
that support these probabilistic AI models where compute-
intensive operations are significantly accelerated.  

In this work, we co-design a probabilistic AI model and 
reconfigurable architecture for (i) Discovering GN structures by 
modelling them as BNs; and (ii) Performing inference on these 
BNs for personalized-treatment selection. To enable these 
operations, we develop modified, hardware-aware versions of 
BN learning and inference operations. These are implemented 
on an architecture that maps BN graphs onto a reconfigurable 
FPGA fabric that consists of several Stochastic Bayesian Nodes 
and supports arbitrary connectivity among them. The 
reconfigurability allows incorporating new domain expertise by 
supporting modifications to GNs, while the stochasticity of 
nodes allows for efficient probabilistic computations. We utilize 
gene expression data of ~3k breast cancer patients for validating 
our approach on an SoC-FPGA platform. This approach can be 
extended to other diseases and medical applications for humans 
and other life forms. 

The paper is organized as follows: Section II provides a 
background on Bayesian Networks, the probabilistic AI models 
used in this work. We then describe the problem statement in 
section III. Section IV consists of the architectural and 
implementation details. Section V discusses the results and 
related analysis. Section VI concludes the paper. 

II. BACKGROUND 

Bayesian Networks (BNs) are graph-based probabilistic AI 
models that attempt to capture knowledge of a domain by 
encoding the various entities as random variables and the 
relationships between them as causal connections. The strength 
of causal relation between variables is represented as a 



conditional probability table (CPT). The two major aspects for 
using BN models is learning and inference. Both operations are 
of high computational complexity and scale exponentially in 
the worst case[7][8].  
Learning: The two major aspects involved in learning a BN 
model are its graph structure and its CPT parameters. The 
structure of the BN is inferred from data through combinatorial 
optimization techniques or constructed through domain 
experts’ knowledge. This work employs a combination of both 
of these techniques. For learning the CPT values, we use the 
maximum likelihood estimate (MLE) method, which is quite 
suitable for our architecture and is one of the most widely used. 
Inference: BN model inference can be either analytic or 
sampling based. Analytic inference methods tend to be exact, 
but are compute intensive, while sampling-based methods are 
approximate but potentially more computationally feasible, 
depending on platform. In this work, the sampling-based 
method is used, as it can be massively parallelized in hardware 
and is amenable to modifications in its implementation. These 
properties are useful in design of a hardware-aware inference 
method for BNs which can be implemented by simple 
computational elements.  

III. PROBABILISTIC AI MODEL 

This section discusses the learning and inference of the 
probabilistic AI model for personalized treatment. Here, GNs 
whose structure is to be discovered are modelled as BNs; each 
gene in the GN becomes a node in the BN. Hence, the problem 
of structure discovery for GNs is mapped to the problem of 
finding the best possible connections between nodes of a BN. 
Fig. 2 shows a high-level view of this process. The structure 
learning algorithm comes up with candidate structures, which 
are scored by a scoring mechanism.  Candidate structures are 
generated by incrementally building on smaller structures. The 
scoring mechanism determines how well the candidate 
structure explains the genetic data. The scoring mechanism 
computes the posterior structure probability 
𝑃(𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒|𝑑𝑎𝑡𝑎) using the Bayes’ rule as follows: 

  

Where 𝑃(𝑑𝑎𝑡𝑎|𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒)  is the structure likelihood of the 
structure   while 𝑃(𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒) is the structure prior. Structure 
prior incorporates the order in which genes are added to the 
structure and can be obtained from literature[3][11]. Structure 
likelihood is computed by averaging over individual node 
likelihoods in the structure: 

 

The individual node likelihoods are independent of the rest of 
the structure given the parent state, hence are approximated by 
performing local inference over the node and its parent using 
Gibbs sampling method: 

 

Here, the first term represents the Gibbs’ sampling inference 
performed over S samples and the second term is the marginal 
probability of the node given the data. The smaller the 
difference between these terms, the better the node’s position 
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Fig. 1. (A) Schematic of a simple gene network[9] portraying gene-
gene interaction through transcription and protein synthesis. (B)  
Subnetwork of the genome-scale breast cancer GN (19k genes); 
part consists of 51 breast cancer genes, 677 related genes and their 
interactions[10]. 

 
Fig. 2. Design flow for structure learning in BNs. Learning algorithm 
generates graphs from data, which are scored by the scoring 
mechanism. The algorithm iteratively improves upon the graph 
structure until structure scores over a certain threshold. 



and data are in agreement with the structure. Although this is 
an approximation, it converges to the exact result with enough 
samples. In this case we choose a sample size of 20k to obtain 
a precision of 0.00005 within the correct answer, which was 
sufficient for the application. 

The nature of this optimization problem prohibits any proof of 
optimality of the candidate structure; hence, the design process 
is terminated when the structure is ‘good enough’, which is 
denoted by a threshold of loss function. It is therefore possible 
for several GN structures to agree with genetic data.  

The other important aspect of this work is to predict the best 
possible personalized treatment. This is done by introducing 
latent variables in the learnt structure. The model takes 
personalized genetic information of a patient, and the latent 
models hierarchically compute a ‘recurrence score’: the 
probability of the cancer tumor to recur post-treatment. The 
recurrence score can then be used to select a treatment that is 
best suitable for the patient. The approach of recurrence-score 
based treatment choice selection has been validated through 
clinical trials[12], although by using less complex AI 
algorithms. 

We construct the model, as shown in Fig. 3, that utilizes the 
GNs like the HER2 network learnt previously and another 
network which corresponds to Luminal A and B type breast 
cancers to hierarchically compute a recurrence score for each 
patient. These intermediate sub-scores cannot be observed from 
data, hence are called latent (or hidden) variables. Computing 
the parameters for these latent variables requires specialized 
analysis of data, known as factor analysis. Factor analysis is a 
statistical method used to describe variability among observed, 
correlated variables in terms of a lower number of unobserved 
(latent) variables called factors. The factors correspond to the 
first order of latent variables, which are sub-scores 
(proliferation, invasion, etc.) related to various subtypes of 
Breast Cancer. The second-order latent variables encode the 
probability of recurrence of certain types of Breast Cancer 
(Luminal A/B, HER2 +ve). The third order latent variable is the 
total recurrence score - the overall likelihood of recurrence of 
the cancer tumor. A succinct representation of the hierarchical 
inference operation we do over the model is as follows: 

 

Here, the 𝑠𝑢𝑏𝑠𝑐𝑜𝑟𝑒𝑠 are inferred from gene 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑑𝑎𝑡𝑎 
of genes in GN, while the 𝑅𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 𝑆𝑐𝑜𝑟𝑒 is inferred from 
the 𝑠𝑢𝑏𝑠𝑐𝑜𝑟𝑒𝑠 . Each of these computations uses Gibbs’ 
sampling for inference and resembles equation (3). The 
recurrence score is helpful for doctors to decide on treatment 
for the patient. A low recurrence score (low probability of 
recurrence of cancer) can indicate that a less harmful treatment 
(e.g., endocrine treatment) should suffice. A high recurrence 
score indicates that a more potent but also potentially more 
harmful treatment (like, e.g., chemo plus endocrine treatment) 
may be required.  

Dataset: The dataset used in this project is obtained from the 
Gene Expression Omnibus (GEO) Database[13]. It consists of 
expression values of 20,000 genes of 3,070 breast cancer 
patients, along with their medical information – the type of 
cancer diagnosed, treatments given, and the survival event. To 
facilitate the structure discovery, it is helpful to refer to prior 
information from literature. This prior information is related to 
what subset among the 20k genes to consider (40 genes 
considered). The data has been discretized into three states High 
expression (H), Medium expression (M) and Low expression 
(L). For validating the personalized treatment model, the 
treatment predictions based on the expression profiles of 
patients are compared with the actual treatments given to the 
patients and the effectiveness of those treatments.  

IV. SYSTEM ARCHITECTURE 

From a computational point of view, the probabilistic AI model 
can be divided into four important steps: 

 
Fig. 3. Hierarchical Bayesian Latent Variable Model designed for 
computing probability of cancer recurrence. ‘Observed’ variables 
(bottom squares) correspond to gene expression values, ‘latent’ 
variables (blue nodes) correspond to known sub-scores associated 
with cancer recurrence. 

 
𝑅𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 𝑆𝑐𝑜𝑟𝑒 = 𝑃(𝑟𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 = ℎ𝑖𝑔ℎ|𝑠𝑢𝑏𝑠𝑐𝑜𝑟𝑒𝑠) ∗

𝑃(𝑠𝑢𝑏𝑠𝑐𝑜𝑟𝑒𝑠|𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑑𝑎𝑡𝑎) (4) 

 
Fig. 4.Overall Architecture for structure learning task. The 
candidate structures are generated and incremented in software 
on the HPS and are mapped to FPGA for scoring. 

 



1. Candidate Structure Generation – Given the ordering 
of genes, generate a structure with random 
connections.  

2. Scoring Candidate Structures – Multiple inference 
operations through Gibbs sampling to generate a score 
for a given structure.  

3. Structure Selection – Given multiple structures, 
compare their scores to select the best possible 
structure given data.    

4. Recurrence Score Computation – Inference operation 
on the learnt structure with latent variables based on 
the gene expression data of a patient.  

 The computations in the first and third steps have a sequential 
flow while the second and fourth steps can be massively 
parallelized. Here, we chose to implement the sequential 
computations using software on a general-purpose processor 
and the parallel computations on a customized hardware based 
on FPGA. The software implements the sequential control flow 
while the custom hardware significantly accelerates scoring 
aspects. We chose an SoC-FPGA platform to implement our 
design as shown in Fig. 4. SoC-FPGAs tightly integrate both 
processor (HPS) and FPGA architectures on a single die. This 
configuration allows us to design an architecture where 
computational loads could be distributed among the two 
platforms for efficient utilization of both.  

A. Hardware Architecture for Scoring Candidate Structures  

Scoring of the candidate structures is implemented on a custom 
reconfigurable hardware instantiated on the FPGA. The 
architecture allows for efficient implementation of Gibbs-
sampling based inference for scoring candidate structures. The 
candidate structure to be scored is mapped on the FPGA. The 
hardware comprises of Gibbs Sampling Units which can be 
arbitrarily connected to each other through the programmable 
crossbar interconnect. Each unit consists of a soft-configurable 
input multiplexer that can be configured to select any other unit 
in the structure as its parent unit. The system is interfaced to the 
software using a SOPC wrapper that implements an Avalon 
slave memory-mapped register (MMR) IP. The software 
configures the network parameters, such as the input 
multiplexer configuration, CPT values, number of samples, by 
writing to the MMRs. Fig. 5(A) shows a detailed block diagram 
of the proposed architecture. 

Gibbs Sampling Unit – A detailed block diagram of the Gibbs 
Sampling Unit in FPGA is shown in Fig. 5(B). The candidate 
structure to be scored is mapped onto the framework by 
mapping its nodes to Gibbs Sampling Units. Each unit consists 
of registers to store the CPT values with 8-bit precision. The 
stochastic sampling is achieved by employing a Linear 
Feedback Shift Register (LFSR) based pseudo-random 
generator in each node. It is seeded by a unique value to 
generate an independent sequence of 8-bit random values. A 
row is selected from the CPT based on the parent nodes state 
which is then compared with the random value to generate 
output state. Each output state is a ‘sample’ in the Gibbs 
sampling process. These samples are accumulated and sent to 
the HPS where the structure score is computed according to 
equation (3). 

B. Software Design 

The software running on the processor implements the first and 
third step of the AI model. The algorithm is summarized as 
follows: 
 

 

 
BEGIN 

READ expressionValues // gene expression data 

READ nodeOrdering // structure prior 

INITIALIZE candidateStructure with nodeOrdering.firstNode() 

APPEND candidateStructure with nodeOrdering.nextNode() 

CalculateCPTs() 

WHILE (size(candidateStructure) < maxSize): 

   APPEND candidateStructure with nodeOrdering.nextNode() 

   FOR node in candidateStructure: 

      AddAsParentNode() 

      CalculateCPTs() 

      score = ComputeStructureScore() // done in FPGA 

      IF (score >= bestScore): 

         KeepAsParentNode() 

      ELSE: 

         RemoveAsParentNode() 

OUPUT bestStructure = candidateStructure 

END 

 

 
Fig. 5. FPGA-Based Proposed Architecture. (A) Shows 
connectivity architecture for instantiating a candidate structure in 
FPGA fabric. Individual nodes are mapped into Gibbs Sampling 
Units by instantiating the corresponding CPTs, while graph 
connectivity is programmed through crossbar interconnect; (B) 
Shows architecture of a Gibbs Sampling Unit. Parent unit state 
selects an entry in the CPT, which is compared to output of LFSR 
to determine output state of current unit. 



 
Candidate Structure Generation: The order in which the genes 
are added (nodeOrdering) is predetermined from literature. The 
software follows this order for generating the candidate 
structures. Initially, the search starts with a single gene in the 
network. As there are no parent genes to the first gene, the CPT 
entries for that node corresponds to the marginal probabilities 
of the three states for that gene, i.e., percentage of patients who 
have high, medium and low expression values. Subsequently 
more genes are added. The CPT values for these genes 
correspond to the probability of a gene being in one of the three 
states given that the parent gene is in one of the states. Once the 
CPT values are populated for the candidate structure, it is ready 
for scoring. The network along with its CPT values are written 
to the FPGA memory-mapped registers. The FPGA then 
performs the sampling and returns the score for that network.  

Structure Selection: In this step, the network that will produce 
the best score from each order is determined. This is done by 
comparing the score of the network to the ground-truth (data). 
More and more genes are subsequently added to the network 
and scored. Finally, the structure with the best score is selected.  

Recurrence Score Computation: Essentially, the structure 
discovery process involves performing multiple inferences on 
the various candidate structures. Hence, the same FPGA 
architecture can be used to perform inference as well as 
structure scoring. In the case of recurrence score computation, 
the structure is already known. The structure along with the 
CPTs is mapped onto the FPGA. After the sampling, the 
inference results for recurrence score are written back to the 
processor memory. 

V. ANALYSIS AND RESULTS 

A. Correctness of Learnt Gene Network 

The final structure generated by the algorithm is compared with 
a reference structure from the KEGG Gene Pathway database 
to validate the approach. Note that such comparison is not 
expected to be available for all applications, but we choose this 
specific GN such that we can also prove our design. The KEGG 
database is a state-of-the-art extensive library which maintains 
and updates a large collection of reference gene networks. 
Finding the correct structure for a GN from expression data is a 
hard problem and is currently an area of active research. As of 
now, there is no well-established notion of ‘correctness’ for a 
GN. As this is a small GN, we could compare it with the pre-
existing GN from the KEGG database. The implementations 
generated are not an exact copy of the KEGG reference GN, as 
the reference GN is formed by compiling the results of several 
research efforts and we used currently a more limited dataset. 
This is, however, not a limitation as the qualitative benefits 
when scored across a larger dataset would persist. Furthermore, 
for the sake of simplicity, the structures being learnt in this 
project were restricted to be trees, which leads to few changes 
relative to KEGG. 

B. Personalized Treatment Inference 

We have developed a validation scheme for the model to gauge 
its accuracy. The validation is done as follows: By using the 
recurrence score generated by those models, we suggest a 

treatment. The Patient dataset has data regarding what 
treatment was provided to each patient along with 5-year 
survival event (whether patient survived for 5-yrs post 
treatment). This information is used to validate to what degree 
the treatment suggested by the model agrees with the doctors. 
We do a cross-validation of over 3070-patient dataset based on 
data from multiple hospitals[13]. The treatments provided to 
the patients did not include a genetic analysis but were made 
based on clinical factors and the doctor’s expertise. As 
expected, from our validation, the treatments suggested by the 
doctors and the ones suggested by our inference model did not 
fully overlap but overlapped around 80% of the time. For 20% 
of the cases, the treatment choice suggested was different; this 
is likely because the gene expression-based approach is able to 
infer a more personalized treatment choice. That could either 
mean that a stronger treatment was given to patient than 
necessary, leading to unnecessary side effects, or that the 
treatment given was not strong enough, leading to sub-optimal 
treatment. It is to be noted that (in the general sense) it has 
already been shown in the research community that the gene 
expression-based approach for inference is more 
accurate[11][15] than using clinical factors alone. 

C. Prior Related Works 

While this work, to the best of our knowledge, is the first 
attempt for implementing Probabilistic AI Architecture for 
personalized medicine, there have been some works that focus 
on implementing BNs on FPGAs[17][18]. These approaches 
build on producing ‘processing units’ on the FPGA and 
distributing the inference task workload. Such an approach 
leads to resource-heavy architecture which is not scalable. For 
example, one unit in [17]takes 12-24% of the FPGA area. This 
requires that designs be partitioned and loaded partially into the 
hardware several times, hence supporting larger applications 
would not be feasible. In our work, the individual units are 
relatively simple stochastic circuits tasked for probability 
distribution sampling which makes our approach much more 
scalable. 

D. Scalability of Probabilistic AI Architecture 

The size of BNs which map GNs vary from few nodes to several 
tens of thousands of nodes depending on the gene pathway 
considered. Since the number of nodes that are to be mapped 
scales linearly with the logic blocks, the application can be 
easily scaled conditioned upon the availability of the logic 
blocks on the FPGA. For the breast cancer gene network 
considered, 14% of the total resources were utilized for 18- 
node GN including the resources utilized by GHRD that came 
along with the board, while for a 41-node GN, 41% resources 
were utilized (See Table 1). We estimate that GNs with 100s of 

TABLE 1. CYCLONE V FPGA RESOURCE USAGE FOR LEARNING AND 

INFERENCE OF 41-NODE GN. 

 Usage % 

Logic Utilization 17060/41910 41 

Total LABs 2570/4191 61 

I/O Pins 172/314 55 

M10K Blocks 25/553 4.5 

 



nodes are feasible on the Cyclone V FPGA. If the candidate 
Bayesian graphs are less than 100 nodes in size, several graphs 
can be mapped onto the FPGA at once, thus enabling several 
graphs to be scored concurrently. For the breast cancer network 
considered, up to 5x speedup is possible for the 18-node GN by 
scoring 5x candidate structures in parallel. Similarly, for 
inference, the same GN can be instantiated multiple times to 
obtain a performance gain of 3-5x (vs. 1.2x for a single GN 
instantiation). The inference GN model was replicated thrice in 
the FPGA to better utilize the resources of the FPGA. The 
FPGA utilization resources for the structure learning and 
inference models are given below in the Table 1. 

E. Performance Evaluation and Comparison with Software 
Baseline 

Baseline: We compare our results with a similar 
implementation in R, which is a data-analysis programming 
language widely used in the bioinformatics domain. R has 
several libraries dedicated to Bayesian structure discovery, of 
which ‘bnlearn’ was chosen. The hill-climbing algorithm (HC) 
was used for structure discovery. This algorithm was executed 
on a 4GHz, 8-core/16-thread Xeon workstation. The runtime 
for structure discovery operation using this configuration is 
listed in the table below. Performance benefits will be greater 
for larger networks, as even high-end CPUs are limited by core 
count, while the FPGA implementation of the score operation 
is not. The runtimes for larger network sizes will increase in 
CPUs while remaining near constant on proposed architecture.  

Upon comparisons with the software-based approach, we 
observed around 25x improvement in the per-patient inference 
time as shown in Table 2. We estimate additional 3-5x 
improvement in both learning and inference if multiple GN 
models are instantiated on the FPGA in parallel. This is because 
some of the resources can be shared by multiple GN model 
instantiations. While the entire design with just one GN model 
takes up ~41% (see Table 1), we estimate that we can fit up to 
5 GN models to achieve full utilization of the FPGA.  The 
human genome consists of over 20k genes. We expect that not 
only the performance will improve with the size of the network 
but also the type of problem that we could solve would go way 
beyond what we have shown. Acceleration in learning and 
inference with up to two orders of magnitude, which we 
demonstrated, would allow us to consider much larger gene 
networks and expand this system to a wide range of other 
diseases. 

VI. CONCLUSION 

We design a probabilistic AI model for suggesting personalized 
treatment options for cancer patients. Furthermore, we develop 

a reconfigurable architecture for implementing this model 
where the computational workload is distributed between 
software and FPGA. In our model, Gene Networks are modeled 
as Bayesian networks for structure discovery of Breast Cancer 
GNs from a Gene Expression dataset of ~3k patients. We 
provide interpretable and personalized treatment options to 
Breast Cancer patients based on the latent variable model we 
designed for utilizing the learnt GNs. Our model agrees with 
the doctor’s treatment choices 80% of the times, while the 
departure in the rest of the treatment choices could be attributed 
to the personalized nature of the model. Several research 
efforts[11][12] have shown that use of personalized genetic 
information leads to better diagnosis and treatment of cancer 
patients. To that end, we are currently in collaboration with 
oncologists and genetic researchers from University of 
Nebraska Department of Genetics and Cell Biology, and 
University of Debrecen Medical School, Hungary toward 
verifying the effectiveness of treatment choices of our model. 
The architecture implemented on a Cyclone V SoC-FPGA 
performs 25x faster and is 25x more power efficient that 
software-only implementation on a Xeon workstation. Our 
prototype platform demonstrates the feasibility of realizing a 
relatively low-cost solution for targeting key applications in 
personalized medicine. Our ultimate vision is a personalized 
medicine system which can be made available in hospitals and 
clinics all over the world. Such system would be able to perform 
at low cost and high-performance Bayesian inferences towards 
interpretable and personalized diagnosis and treatment of 
cancer patients. The system’s reconfigurability would allow 
support for multiple healthcare solutions and the ability to 
assimilate the latest breakthroughs in medicine toward 
improved effectiveness. 
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