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Abstract

The quest to improve performance forces designers to explore finer-grained multiprocessor machines. Ever increasing
chip densities based on CMOS improvements fuel research in highly parallel chip multiprocessors with 100s of
processing elements. With such increasing levels of parallelism, synchronization is set to become a major performance
bottleneck and efficient support for synchronization an important design criterion. Previous research has shown that
integrating support for fine-grained synchronization can have significant performance benefits compared to traditional
coarse-grained synchronization. Not much progress has been made in supporting fine-grained synchronization
transparently to processor nodes: a key reason perhaps why wide adoption has not followed.

In this paper, we propose a novel approach called Synchronization Coherence that can provide transparent fine-
grained synchronization and caching in a multiprocessor machine and single-chip multiprocessor. Our approach merges
fine-grained synchronization mechanisms with traditional cache coherence protocols. It reduces network utilization
as well as synchronization related processing overheads while adding minimal hardware complexity as compared
to cache coherence mechanisms or previously reported fine-grained synchronization techniques. In addition to its
benefit of making synchronization transparent to processor nodes, for the applications studied, it provides up to 23%
improvement in performance and up to 24% improvement in energy efficiency with no L2 caches compared to previous
fine-grained synchronization techniques. The performance improvement increases up to 38% when simulating with
an ideal L2 cache system.
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systems. Computer architects and compiler writers
are therefore continuously motivated to develop new
techniques to capture more program parallelism
at various granularity levels such as instructions,
threads and processes. To maximize parallelism
often speculation based techniques [1-9] are applied.
At the same time, improvements in technology
enable designers to even increase the grain size of
computer architectures.

With increasing levels of parallelism due to both
finer-grained systems and more efficient techniques
to expose and exploit parallelism, synchronization is
set to become a major performance bottleneck and
efficient support for synchronization an important
design goal. We believe that there are two main
directions for efficient synchronization support. One
popular approach is based on improving the effi-
ciency of traditional coarse-grained synchronization
with speculative execution beyond synchronization
points. Another suggested alternative is fine-grained
synchronization, such as synchronization at a word
level.

There are several synchronization mechanisms
proposed that use speculation at runtime. Recently
proposed speculative synchronization techniques in-
clude Speculative Synchronization [10], Speculative
Lock Elision [11] and Transactional Lock Removal
[12]. Speculation often improves performance by
reducing the overhead of false dependencies. While
the applicability of speculative synchronization is
unquestionable, these approaches have their own
share of disadvantages. First, they will likely face
scalability limitations when used in finer grained
machines. Secondly, power consumption in next
generation deep sub-micron technology nodes would
likely limit their usefulness further. Simply, specu-
lative execution requires rather complex hardware
and could cause significant waste of energy due
to unnecessary computations on misspeculations.
Nevertheless, it is very clear that speculative syn-
chronization is a great approach as it requires
lower programming effort, even if it might trade
performance and energy efficiency for it.

Another way to reduce the performance impact of
synchronization is by making it more fine grained.
Previous research has shown that integrating sup-
port for fine-grained (e.g., word level) synchro-
nization can have significant performance benefits
compared to traditional coarse-grained techniques
[13]. Not much progress has been made, however, in
supporting such synchronization mechanism trans-
parently to processor nodes. This is perhaps a key

reason why wide adoption has not followed.

This paper explores the idea of Synchroniza-
tion Coherence (SyC* ), a transparent fine-grained
mechanism using full/empty synchronization [14-
16], that combines synchronization and caching into
one efficient hardware solution. In particular, we
propose to handle a full/empty synchronization
miss, which occurs when a required full/empty
state is not met, in a similar way to a cache
miss: the synchronization miss stays in the memory
until it is resolved. A cache miss occurs when a
target location cannot be read or written in the
cache; a synchronization miss occurs when the
target location cannot be read or written in the
memory. The major difference between a cache and
a synchronization miss in SyC is that the former
will be eventually resolved whereas the latter can
stay in the memory for an arbitrary amount of
time. To avoid possible saturation of the memory
with synchronization misses, the amount of allowed
outstanding synchronization misses can be limited.

SyC has the following key advantages:

(i) It can improve the performance of previous
approaches based on full/empty bits for syn-
chronization, due to fewer network messages
(or bus transactions) in the synchronization
coherence protocol and no need to have soft-
ware trap when synchronization fails.

(ii) It requires minimal changes to cache coher-
ence, because the hardware required by the
lockup-free cache organization, which enables
outstanding cache misses, can be used for
synchronization misses as well.

(iii) It is transparent to processor nodes, because
synchronization misses are treated as cache
misses and are resolved transparently. An out-
of-order processor and a lockup-free miss-
under-miss cache organization can hide part
of the synchronization miss latency. If a pro-
cessor cannot continue execution due to a syn-
chronization miss, it stalls or makes a context
switch by analogy to a context switch on a
cache miss in a distributed shared memory
multiprocessor [17].

(iv) It requires likely less hardware overhead
compared to speculative synchronization
approaches. There is no need for speculation if
fine-grained synchronization is properly used.

1 We call it SyC to avoid confusion with SC: Sequential
Consistency.



(v) It is more power efficient than trap-based
fine-grained approaches [15,18]. In the case
of trap-based approaches to fine-grained syn-
chronization, an interrupt handler either polls
the location until synchronization is satisfied,
or makes a context switch to another ready
thread (if any) after a certain waiting period.
Polling wastes CPU time and energy. SyC
does not require polling for synchronization
because a synchronization miss is treated as a
cache miss and it is resolved transparently. In
addition, SyC requires fewer network messages
that can save considerable energy. Overall,
the approach might prove to be also more
energy efficient than a speculative execution
approach. We do not have an exact comparison
due the difficulty of implementing the corre-
sponding speculative schemes.

In order to evaluate SyC, we have developed a
complete simulation and compilation flow. We have
modified and extended extensively the SimpleScalar
simulator [19] to model a directory based cc-NUMA
architecture with full/empty tagged shared memory,
cache coherency, and SyC. The simulator imple-
ments k-ary n-cube networks and wormhole routing
protocols. It is our plan to make this tool available
to facilitate additional research on SyC and fine-
grained synchronization techniques. In our experi-
ments, we have adapted two applications MICCG3D
[13] and LU from the SPLASH-2 suite [20,21] and
have developed a new application resembling the
communication in DNA chain comparison (also
called as Diamond DAG [22]). We also evaluated
MST from the Olden benchmark suite [23]. Overall,
SyC achieves up to 21% performance improvement
and up to 24% power-efficiency benefits compared
to state-of-the-art techniques with no L2 caches.
With an ideal L2 cache system, we estimate that the
performance speedup of SyC over trap-based fine-
grained scheme goes up to 38%.

The rest of this paper is organized as follows: Sec-
tion 2 gives a primer on synchronization including
the fine-grained full/empty synchronization seman-
tics as well as architectural support for fine-grained
synchronization. Section 3 introduces the proposed
SyC approach, including semantics of full/empty
memory operations, the proposed architecture and
protocol for SyC. Section 4 shows the experimental
setup and introduces the applications that we eval-
uated. Section 5 presents the experimental results.
We conclude the paper in Section 6.

2. Overview of Synchronization

There are two main types of synchronization:
mutual exclusion and condition synchronization.
Mutual exclusion guarantees that critical sections
of code are not executed by more than one thread
at a time, whereas condition synchronization delays
a thread until a certain condition is true. Locks
or semaphores are typically used to control mutual
exclusion. Flags, barriers, semaphores, or condition
variables with locks or monitors can implement
conditional synchronization.

Synchronization can be either coarse grained or
fine grained. The granularity of synchronization is
measured by the amount of data that is commu-
nicated with the synchronization [15]. For exam-
ple, barriers are typically coarse grained because
multiple shared variables are passed across barriers.
Locks, flags and semaphores can be both fine grained
and coarse grained.

Coarse-grained synchronization such as a global
barrier or a coarse-grained lock obviously can ex-
pose false dependencies leading to performance
degradation even though the use of coarse-grained
synchronization simplifies parallel programming. It
is therefore likely less efficient on highly parallel
systems. Nevertheless, many approaches, such as
improving the performance of coarse-grained locks
and barriers [24,25] have been proposed to increase
the efficiency of coarse-grained synchronization. We
also use an efficient tree-based barrier [25] in our
implementation of coarse-grained synchronization.

One approach to reduce false dependencies caused
by coarse-grained synchronization, or/and to hide
synchronization latency, is to speculatively execute
threads beyond synchronization points such as bar-
riers or locks. The recent proposal, Speculative
Synchronization [10], utilizes speculative threads
that execute past active barriers. The hardware
checks for conflicting accesses and rolls back the
offending threads. Speculative Lock Elision (SLE)
[11] also reduces the false sharing introduced by
sub-optimally placed locks and barriers. Transac-
tional Lock Removal [12] removes locks to construct
an optimistic transaction. In addition, it uses a
timestamp-based conflict resolution scheme to re-
solve data conflicts efficiently.

A finer granularity of synchronization (e.g. at the
level of words) is another feasible way to reduce
or to avoid false dependencies due to unnecessary
synchronization [15,26]. This means, for example,



that a thread can wait only for the data item it
requires rather than for all shared data passed with
a coarse-grained synchronization. Fine-grained syn-
chronization allows a dataflow style of computation
that suits thread-level parallelism; therefore, fine-
grained synchronization could become more impor-
tant in order to support thread-level parallelism
more efficiently in future highly parallel machines
and single-chip designs. Traditional synchroniza-
tion mechanisms such as locks, condition variables,
semaphores and barriers can in fact be used for
fine-grained synchronization. However, there is a
tradeoff between granularity of synchronization and
the amount of memory used for synchronization:
the finer granularity of synchronization, the more
memory is required to control it with traditional
techniques.

2.1. Full/Empty Fine-Grained Synchronization

Another approach to achieve fine-grained
synchronization is to implement self-synchronized
shared data structures with full/empty state such
as write-once I-structures [27], M-structures [28], J-
structures and L-structures [29,15]. An instance of
a self-synchronized structure can hold a value and
can be either full or empty. A structure is accessed
with special synchronized reads and writes that can
atomically test and change its full/empty state in
addition to reading and writing its value.

Architectural support for fine-grained
synchronization based on full/empty state includes
a full/empty-tagged memory, where each location
(e.g., word) can be tagged as full or empty with a
full /empty bit associated with it; if the bit is set the
location is full, otherwise it is empty. One full /empty
bit per a 32-bit word implies an overhead of only
3%, or 1.5% per a 64-bit word. Special loads and
stores that can test and/or change the full/empty
bit, in addition to reading or writing, are used to
access the full/empty-tagged memory. The MIT’s
Alewife [29] machine, HEP [16], and Tera [14], are
examples of multiprocessors with hardware support
for fine-grained synchronization using full/empty
tags in memory (HEP and Tera use also registers
with full/empty bits for synchronization).

For example, MIT’s Alewife is a directory-based
CC-NUMA multiprocessor with a full /empty tagged
shared memory. Hardware support for fine-grained
word-level synchronization includes full/empty bits,
special memory operations and a special full /empty

trap. Software support includes trap handler rou-
tines for context switching and waiting for syn-
chronization [18]. While the Alewife architecture
supports fine-grained synchronization and shows
demonstrable benefits over a coarse-grained ap-
proach, it still implements synchronization in a soft-
ware layer above the cache coherence protocol layer.
Keeping the two layers separate entails additional
communication overhead.

A few other approaches to fine-grained synchro-
nization exist in other multiprocessors, such as the
M-machine with full/empty tagged registers [30]
and a simultaneous multithreaded (SMT) processor
with hardware-based blocking locks described in
[31]. Both mechanisms are proposed for efficient fine-
grained synchronization of threads within a pro-
cessor. However, these designs do not provide fine-
grained synchronization across multiple processors.

2.2. Fine-Grained Synchronization Structures

In order to define the semantics of full/empty
memory operations, let us consider first the J-
structures and L-structures, also used to express
fine-grained synchronization in the programming
environment of the MIT Alewife machine [15].

A J-structure is an abstract data type that can
be used for consumer-producer type of process
interaction. A J-structure has the semantics of a
write-once variable: it can be written only once, and
a read from an empty J-structure suspends until
the structure is filled. An instance of the J-structure
is initially empty. A read (J-read) from the full J-
structure returns its value, whereas the read from
the empty J-structure suspends on the structure
until it is filled. A write (J-write) to the empty J-
structure makes it full and resumes all pending J-
reads (if any), whereas an attempt to write the full
J-structure is reported as an error. To be reused, a
J-structure can be reset to empty. The semantics of
the J-structure are depicted in Fig. 1(a).

A lockable L-structure is an abstract data type
that has three operations: a non-locking peek (L-
peek), a locking read (L-read), and an unlocking
write (L-write). An L-peek is similar to a J-read:
it waits until the structure is full, and then returns
its value without changing the state. An L-write is
similar to a J-write: it stores the value to an empty
structure, changes its state to full and releases all
pending J-reads, if any. As for J-structures, an error
is signaled on a write to the full L-structure. An
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Fig. 1. Semantics of the self-synchronized structures

L-read waits until the structure becomes full then
it changes the state to empty (locks the structure),
and returns the value read. The semantics of the L-
structure are depicted in Fig. 1(b).

3. Synchronization Coherence Approach

This section presents Synchronization Coherence
(SyC), a transparent fine-grained mechanism using
full/empty synchronization, that combines synchro-
nization and caching into one efficient hardware so-
lution. We will describe the semantics, architecture
and protocol of SyC and compare it with the trap-
based fine-grained approaches.

3.1. Semantics of Full/Empty Memory Operations
in SyC

Assume a multiprocessor with full/empty tagged
shared memory (FE-memory) where each location
(e.g. word) can be tagged as full or empty (i.e., it has
a full/empty bit (FE-bit) associated with it): if the
bit is set the location is full, otherwise the location
is empty. In order to provide fine-grained syn-
chronization such as J-structures and L-structures
described above, the multiprocessor should support
special synchronized FE-memory operations (reads
and writes) that can depend on the FE-bit and can
alter the FE-bit in addition to reading or writing the
target location. The processor architecture should
include corresponding FE-memory instructions as
well as full/empty conditional branch instructions.

We distinguish unconditional and conditional FE-
memory operations. An unconditional operation
does not depend on the value of an FE-bit. We
assume that a conditional read is executed if the
location is full, whereas a conditional write is ex-
ecuted if the location is empty. A synchronization
miss occurs when the required state of the location is
not met. We propose that each conditional operation
has two versions: a trapping (or faulting) version

that traps on a synchronization miss, and a waiting
version that is postponed on a state miss until the
location reaches the required state.

We distinguish non-altering and altering FE-
memory operations. Non-altering operations do not
change the FE-state. An altering operation (read or
write) sets a new FE-state to the location beyond
reading or writing data. We assume that the altering
read sets the location to empty, and the altering
write sets the location to full.

Finally, we assume that each of the FE-operations
returns, as a side effect, an original value of the
full/empty bit associated with the location. This is
to be used as a full/empty condition code in the
processor.

The semantics of the synchronized conditional
(waiting and trapping) FE-memory instructions and
their altering versions are shown in Table 1. We
use angle brackets < and > to denote an atomic
action; functions wait and notifyAll are similar to
the wait and notifyAll methods in Java monitors:
wait suspends a thread on the location until the
thread is notified, whereas notifyAll resumes all
threads pending on the location (if any).

Semantics of synchronized waiting FE-memory
operations can be implemented using synchronized
trapping FE-memory instructions like in the MIT
Alewife multiprocessor [15]. On a synchronization
miss, a trapping FE-memory instruction fires a
trap, and an interrupt handler can either poll the
location until the required full/empty state is met,
or suspend the thread, place it on a queue of waiters
and switch the context to another ready thread
(if any). With trapping FE-memory instructions,
the queue of waiters, i.e., threads suspended on
synchronization misses, is maintained in software.
When an FE-bit is altered, the corresponding queue
is checked and if it is not empty, all (or selected)
waiters can be resumed, i.e., moved to the queue of
ready threads.



Table 1
Conditional Full/Empty Tagged Memory Instructions

FE-memory instruction [Notation|Semantics

Waiting Read WRd <while (FE-bit == empty) wait(); read;>
Trapping Read TRd <if (FE-bit == empty) trap else read;>
Waiting Write WWr  |<while (FE-bit == full) wait(); write;>
Trapping Write TWr <if (FE-bit == full) trap else write;>

Waiting Altering Read |WARd

<while (FE-bit == empty) wait(); read; set FE-bit to
empty; notify All();>

Trapping Altering Read [TARd

<if (FE-bit == empty) trap else {read; set FE-bit to empty;
notify All();}>

Waiting Altering Write |[WAWr

<while (FE-bit == full) wait(); write; set FE-bit to full;
notify All();>

Trapping Altering Write| TAWr

<if (FE-bit == full) trap else {write; set FE-bit to full;
notify All();}>

3.2. Architectural Support for SyC

In order to support Synchronization Coherence,
some changes are required to the architecture of
a typical cc-NUMA multiprocessor. This section
describes the architectural enhancements that need
to be made.

Each word in the shared memory is tagged with
a full/empty bit (FE-bit) and a pending bit (P-
bit). An FE-bit indicates whether a corresponding
word is full or empty. A P-bit indicates whether
there are operations (reads or writes) pending on
a corresponding word: if the P-Bit is set, it means
there are pending synchronized reads (if the word is
empty) or pending writes (if the word is full) for the
corresponding word. This information is required so
that a successfully executed altering operation can
immediately satisfy one or more pending operations.

A vector of FE-bits and a vector of P-bits as-
sociated with words in a memory block are stored
in the coherence directory and as an extra field
in the cache tag when the block is cached. This
way, a tag (directory) lookup includes tag match
and inspection of full/empty bits. Each home node
(directory) also contains a State Miss Buffer (SMB)
that holds information regarding which nodes have
pending operations for a given word and whether
operations are altering or not. The synchronization
miss is treated as a cache miss, and information on
the miss is recorded at the cache, e.g., in a Miss
Information/Status Holding Register (MSHR) and
a write buffer [32].

Fig. 2 illustrates the changes required to cache and
directory structures. In the figure, we assume a 4-
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Fig. 2. Organization of the Full/Empty Tagged Cache and
Directory

processor system with a 32-byte (4 words) memory
block. In addition to the 256-bit data block and the
tag bits, each cache block has 8 extra bits: 4 FE-bits
and 4 P-bits (that is about 3% of storage overhead
per cache block).

As already mentioned, information regarding
which nodes have pending operations for a given
word is stored in the SMB, which is indexed by the
word address (see Fig. 2). An entry in the SMB
is allocated when a first operation suspends on
the word; an entry is released when there are no
pending operations (the pending queue is empty).
Each entry in the SMB contains two full bit vectors:
a vector of pending nodes and a vector of altering
nodes.



A Dbit in the full vector of pending nodes cor-
responds to a node and indicates whether the
node has conditional FE-memory operations (reads
or writes) pending on the word. A bit in the
full vector of altering nodes indicates whether the
pending operation is altering. This information
is needed to resume (and to complete) pending
operations when the FE-bit of the word is altered.
If the vectors indicate that there are both types
of operations, altering and non-altering, pending
on the word, then several (if not all) non-altering
but only one altering operations can be resumed.
For example, the directory controller can resume all
non-altering operations and one altering operation.
When the operations are resumed the controller
sends corresponding messages to pending nodes
indicating which operations have been resumed and
alters the FE-bit if one of the resumed operations is
altering. The resulting FE-bits are always sent with
replies to indicate the current FE-state of a word
in the memory block. Similarly to the MIT Alewife
multiprocessor [29], the FE-bits can be transmitted
with the address.

How many entries should the SMB contain? For
a multiprocessor with n nodes and hit-under-miss
lockup-free caches, there could be at the most n-
1 pending operations (reads or writes). Hence, for
a 4-processor system, for example, 3 entries would
be enough in the SMB of each node. For very large
configurations or for a multiprocessor with miss-
under-miss lockup-free caches (not used here), the
required number of entries may become too large. In
such cases, an overflow mechanism can be employed:
if a directory runs out of SMB entries, the directory
controller should not accept the request that caused
the overflow and send it back to the cache controller
to retry.

In SyC, synchronization misses to the same word
form a list of pending FE-memory operations that
is maintained in hardware by cache and directory
controllers, rather than in software by an interrupt
handler as in the previous approaches [29]. Thus,
SyC allows implementing conditional waiting FE-
memory operations transparently to the CPU.

The SyC protocol calls for slightly more sophis-
ticated directory and cache controllers. The cache
controller not only matches the tag but also checks
the full/empty bits depending on the instruction,
and makes a decision based on the state of the
cache line as well as the associated FE-bits and P-
bits. The directory controller is also modified to
account for the SMB implementing the SyC protocol

in the directory. It has to send data asynchronously
to resolve synchronization misses on writebacks, by
looking up the SMB, etc. More details of the SyC
protocol are provided next.

3.3. SyC' Protocol

We have chosen a directory-based cache coherence
protocol used in the SGI Origin [33] multiprocessor
as the baseline for our Synchronization Coher-
ence protocol. This is the MESI protocol, which
employs request-forwarding transactions involving
three nodes: a requesting node, a home node and an
owner of a recent copy of a target memory block.
It allows cache blocks in the FEzxclusive state to
be replaced without requiring notification to the
directory; it fully supports upgrade requests, etc.
The directory side has five states: Un-owned (block
not present in any node’s cache), Exclusive (block
may be present in only one node’s cache), Shared
(block may be present in several nodes’ caches),
Busy-Exclusive (directory is busy with exclusive-
read request forwarding), and Busy-Shared (direc-
tory is busy with shared-read request forwarding).
Further details can be found in [33].

To integrate fine-grained synchronization into
MESI, several new messages have been added. SyC
supports the complete set of FE-memory operations
including eight conditional operations shown in
Table 1 and unconditional operations (not shown in
the table): ordinary read and write, altering read
and write. We do not consider here ordinary reads
and writes because they are handled in SyC in the
same way as in the SGI Origin protocol.

The states of cache lines and directory states
of memory blocks are the same as in the MESI
protocol, however, each word in a cache or in the
main memory has a synchronization state: a word
can be either full or empty that is indicated by the
FE-bit, and it may have a queue of pending FE-
memory operations that is indicated by the P-bit. A
home directory controller using the FE- and P-bits
and SMB at the directory side maintains a queue of
pending conditional (waiting) operations.

To illustrate the inner workings of SyC, we con-
sider several examples of FE-memory operations.
The examples are shown in Fig. 3. Namely, we
consider operations (waiting read and altering write
ones) needed to support J-structures. Suppose a
processor issues a synchronized conditional read
that misses in its cache (it could be either ordinary
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miss or synchronization miss).

Fig. 3(a) shows a scenario on a synchronized
waiting read. The cache sends a RD_SYNC message
(shown as #1 in the figure) to the directory, which,
assumed here, has the required word in the full
state (FE-bit is 1). The directory therefore sends
a SHD_REPLY (if its in the Shared state) or an
EXCL_REPLY (if its in the unowned state) and
the synchronized read is satisfied once the message
reaches the cache (#2).

In Fig. 3(b), the cache again sends a RD_SYNC
message to the directory (#1). This time however,
the word is empty (FE-bit is 0) and there are no
synchronized reads already pending (P-bit is 0). If
the directory state is unowned or shared, there can’t
be a node that has done a synchronized altering
write to its local cache. In this case, the directory
sets the P-bit (#2) and creates an entry in the SMB
with the requesting node’s bit set (#3). When a
synchronized altering write occurs, the SMB will be
checked and replies sent, to satisfy all the pending
synchronized reads to this word, as will be seen later.

Fig. 3(c) shows a situation similar to above, except
that the memory block is in the Exclusive state at
the directory. There is a chance therefore, that the

owner of the block might have done a synchronized
write to this word. The directory therefore forwards
the request by sending an INTERVENTION_SYNC
request (#4) to the owner and passes to the Busy
state. The owner cache however doesn’t have the
requisite word in full state (FE-bit is 0) either,
and therefore sets the P-bit (#5) so that if a syn-
chronized write is performed later on, the pending
reads can be immediately notified. It also sends
a SYNC_NAK message and the directory, upon
receiving this message, passes from the Busy state
back to the Exclusive state (#6).

Fig. 3(d) shows the sequence for a synchronized
(trapping) altering write. The FE-bit is 0 (an
exception if it was already 1) and there are pending
requests (P-bit is 1). The cache sets the FE-bit
and passes to the Shared state (#2). It then sends
a synchronized writeback message (SYNC_WB) to
the directory. The directory on getting this message
(#3) sets the FE-bit, resets the P-bit and passes to
the Shared state. The SMB entry is checked (#4) to
find out the pending nodes. Assume that there are no
pending altering reads. SHARED_REPLY messages
are sent to each of these pending nodes (#5 and
#6) to satisfy the synchronized reads, and the SMB



entry is then squashed.

The new messages added to the coherence
protocol to integrate fine-grained synchronization
(waiting and altering FE-memory operations) are
RD_SYNC, WR_SYNC, INTERVENTION_SYNC,
SYNC_NAK, and SYNC_WB and the directory has
the additional state BUSY_SYNC. Each RD_SYNC
or WR_SYNC request also indicates whether the
corresponding operation (read or write) is altering.
Many of the protocol messages also require the
FE-bits and P-bits to be tagged along.

To support all FE-memory operations, the pro-
tocol distinguishes altering and non-altering op-
erations: an altering operation alters the FE-bit,
whereas a non-altering read does not change the FE-
bit. If an altering operation causes some pending
orthogonal altering operations to be resumed (for
example, an altering write resumes a waiting alter-
ing read) then the SyC protocol uses a “passing the
baton” technique so that the FE-bit is not changed
by either of the operations.

To illustrate this, consider the following example.
Suppose a processor issues a conditional altering
write to a word, which misses in the cache. In this
case, the write miss is recorded in the MSHR and
is forwarded to the home node. Assume that the
directory state of the target memory block is shared
or unowned, and the target word is empty (the FE-
bit is 0). The directory controller checks the P-bit,
and if it is not set (there are no waiters) the directory
controller sets the FE-bit to full and processes the
synchronized write miss as an ordinary write miss.
If the P-bit is set, there are pending reads on the
word, and the directory controller looks up the SMB
to find which nodes have conditional reads pending
for this word and whether some of the pending reads
are altering. The controller picks all nodes with non-
altering reads and one node with altering read and
resets corresponding bits in the SMB and the P-
bit in the directory. It sends the data for the block
back to the requestor with a forwarded request to
resume selected pending nodes. The requester writes
the block and replies directly to the pending nodes,
sending a revision message to the home node. Note
that the directory state is shared and the word is
left empty.

4. Experimental Setup

In order to evaluate SyC, we have modified and ex-
tended extensively the SimpleScalar simulator [19].

Table 2
Multiprocessor Parameters

L1 D-Cache 32kb, 4-way, 32byte per line
L1 latency 1 cycle
DRAM latency 100 cycles

Interconnect layout 2-D mesh and Hypercube

Flit size 32 bits

Interconnect speed 4 cycles per hop

Router delay 4 cycles for the first flit Message

launch delay 4 cycles

trap cost (for baseline) 10 cycles

Number of processor nodes|1, 4, 8, 16, 32, 64

The basic structure of the simulator, including the
synchronization primitives, follows the conventions
used by the multiprocessor version of Simulator
developed by Manjikian [34], however our simulator
is based on the out-of-order version of SimpleScalar
(sim-outorder) with detailed timing simulations. We
model a directory based cc-NUMA architecture with
full/empty tagged shared memory and support for
SyC. In the simulated network, messages are broken
into flits and sent in a pipelined manner. Table 2
shows some of the important simulation parameters.

We model two types of interconnection networks:
2-D meshs and hypecubes. Time (hops) needed for
communication between two nodes in the network
are calculated based on the interconnect types
for each of them. For a 2-D mesh network, the
interconnect delay (from 1 to (X +Y —2), where X
and Y represents the width and height of the mesh
and X *Y = N is the number of nodes) is dependent
on the individual position of the two communicating
nodes, while the delay is typically smaller (< loga N,
where N is the number of nodes) in the case of
hypecubes. Network contention is also considered
during the calculation.

To express fine-grained synchronization, we em-
ploy L-structures and J-structures similarly to the
MIT Alewife machine [15]. To access the structures,
we have developed synchronized load and store
functions using FE-memory operations. We have
extended the compilation flow to automate sup-
port for source level fine-grained synchronization.
The FE-instructions that implement fine-grained
synchronization are inlined during compilation as
assembly macros.



4.1. Applications

During our research we have noted that there
are very few benchmarks available that have been
written for evaluating fine-grained synchronization;
previous studies [13] have primarily focused on
MICCG3D. The major reason for this is the lack of
machines that support fine-grained synchronization
in hardware as well as the lack of compiler support.
Most of the shared memory applications are written
using traditional software synchronization mecha-
nisms such as barriers, semaphores, locks and con-
dition variables. Fine-grained synchronization often
would require changing the underlying algorithms
used.

We have used three available applications,
MICCG3D [13], LU from the SPLASH-2 suite
[20,21] and MST from the Olden benchmark
suite [23]. We also developed a new application
resembling the communication in DNA chain
comparison (also called as Diamond DAG [22]).

Other benchmarks in SPLASH-2 have also been
examined, but we found that their data access
patterns do not benefit from fine-grained synchro-
nization without perhaps a complete redesign of
the algorithms and modification of the underlying
data structure. Based on our analysis, most applica-
tions in SPLASH-2 have limited number of barriers
and thus the synchronization overhead is already
pretty small. According to the original SPLASH-2
paper[21], most of the applications have a close to
perfect speedup when a perfect memory system is
applied, with the exception of only four benchmarks:
LU, cholesky, radiz, and radiosity. We consider
therefore these benchmarks as possible targets for
fine-grained synchronization and studied them in
detail. A summary of our analysis is shown below.
— LU: The LU kernel factors a dense matrix into

the product of a lower triangular and an upper

triangular matrix. FGS has proved to be beneficial
for LU during our experiments and has been used
in our evaluation.

— Cholesky: The blocked sparse Cholesky factoriza-
tion kernel is similar in structure and partitioning
to the LU factorization kernel but has two major
differences: (i) it operates on sparse matrices, and
(ii) it is not globally synchronized between steps.
Without frequent global synchronization (as in
LU), cholesky does not benefit significantly from
FGS.

— Radiz: The integer radix sort kernel implements
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Fig. 4. Data flow pattern for the DNA Chain application.

a parallel sorting algorithm based on counting

sort. Since part of the algorithm during the

prefix computation in each phase is not inherently
parallelizable, even FGS cannot make it more
efficient algorithmically.

— Radiosity: This application computes the equi-
librium distribution of light in a scene using the
iterative hierarchical diffuse radiosity method.
The lower speedup of radiosity is due to its
scalability problem caused by its small problem
size. We cannot unfortunately generate a larger
input size. This is because these inputs have a
special meaning, so using random sets would not
work.

Therefore, only LU from SPLASH-2 suite is
used in our evaluation. We have developed two
versions of each application: a version with coarse-
grained barrier synchronization (henceforth called
coarse-grained version), and a version with fine-
grained synchronization using J-structures (fine-
grained version). Following is a brief introduction to
the applications.

4.1.1. DNA Chain Comparison

Fig. 4 shows the data flow pattern for the DNA
Chain comparison application. Each node in a
thread represents a computation phase. The arrow
shows the data dependency between phases: com-
putation in each thread on each phase depends on
the values previously computed by its two adjacent
threads and itself. Such a dataflow pattern requires
lots of synchronization and can therefore likely ben-
efit from a fine-grained synchronization approach.

4.1.2. MICCG3D

MICCGS3D is a Modified Incomplete Cholesky
Conjugate Gradient method for 3D boundary value
problems. It solves the matrix equation: Az=b,
where A is a sparse and symmetric positive matrix, x
is the vector that needs to be solved. The computa-
tion of MICCG3D is illustrated in Fig. 5([13]). Due
to the inherent dependency within z, the data being
computed at an instant of time forms a “wave front”.
All the data on the same wave front can be computed
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in parallel and the dependency is perpendicular to
the front.

We have implemented both fine-grained and
coarse-grained versions of this application. In
the coarse-grained implementation of MICCG3D,
the data are partitioned into blocks. Barriers are
inserted to maintain the dependency across threads.
In the fine-grained implementation, we use J-
structures supported by FE-memory operations to
enforce the dependency among threads.

A detailed description of MICCG3D can be found
in [13].

4.1.3. LU

LU is an algorithm to factorize a dense matrix that
can be performed efficiently if the dense nn matrix
A is divided into an Nx N array of Bx B blocks (n
= NB). Fig. 6 shows the pictorial representation
of the algorithm ([21]). The arrows in the figure
show the dependencies among blocks. We used the
original implementation for LU found in [21] as
the coarse-grained version of the application. We
converted it to a fine-grained one by eliminating
barriers and adding FE-memory operations in the

(2D Scatter Decomposition)
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source code. We haven’t changed the way data
is partitioned. In our future work, we plan to
completely redesign these applications to better suit
fine-grained synchronization.

4.1.4. MST

MST is a parallel algorithm calculating mini-
mum spanning trees based on a given non-directed
weighted graph included in the Olden benchmark
suite [23]. The application implements the parallel
algorithm proposed in [35]. It is also studied in
the speculative synchronization [10]. The Olden
codes are pointer-based applications that operate on
graphs and trees. They are annotated so that the
compiler or the programmer can easily parallelize
them. The only difference for MST is that we
run it on up to 32 processors (instead of 64 for
other applications) based on the suggestions in the
benchmark distribution.

4.2. Programming Support for SyC

Appropriate programming support is very impor-
tant in order to make fine-grained synchronization
(FGS) implementation more effectively. Here we de-
scribe the essential programming support required
at both application-level and compiler-level for FGS.

Application-level support helps programmers to
write parallel programs with FGS more efficiently.
Specifically, the required elements could include:

— First, one must understand the implications at
the algorithm level in order to exploit the inherent
benefits of FGS.

— Second, a mechanism to express the variables as
FGS-based structures should be provided, such
as using the L- or J-Structures. The fine-grained
structures should be declared as language pro-
vided special types (for example, new modifiers in
C/C++ could be used).

— Fine-grained structures can also be used in con-
junction with higher-level synchronization con-
structs such as semaphores and monitors. These
structures can be based on FGS. For exam-
ple, efficient FGS-based lock and barrier im-
plementations such as Optimistic Synchroniza-
tion [26] primitives using load linked/store con-
ditional would be an attractive alternative to
traditional mutual exclusion locks. As reported
by Martin Rinard, the use of FGS-based syn-
chronization primitives can significantly reduce



the memory consumption and improve the overall

performance [26].

At the compiler-level, any memory access that
goes to FGS data structures defined above have to
be translated into special Load/Store operations,
which will be recognized by the architecture.

We assume that the application is written ex-
plicitly in parallel in the above discussions. If the
original application is written in sequential format,
parallelizing compilers would be needed to: (1)
identify parallel components in the application; and
(2) identify the structures where FGS could be used
and transform them to special FGS Load/Store
operations automatically. Apparently, this will be
much more difficult compared to the previous ap-
proach. Nevertheless, single-chip multiprocessors
(especially) would benefit to have such compilers.
The techniques required would be a relatively small
extension to compilers such as the one designed for
Raw processors [36].

5. Results

In order to estimate performance improvements
and energy savings due to SyC, we have conducted
three series of simulations: coarse-grained barrier
synchronization on a traditional directory based cc-
NUMA architecture (Coarse), fine-grained synchro-
nization on a directory based cc-NUMA architecture
with full/empty tagged shared memory (FG-Trap)
and the proposed synchronization coherence (FG-
SyC).

As expected, both fine-grained versions (FG-SyC
and FG-Trap) achieve good performance speedup
compared to Coarse. FG-SyC also achieves signifi-
cant speedup compared to FG-Trap in most cases.
In addition, FG-SyC achieves significant energy sav-
ings compared to both FG-Trap and Coarse. In cases
where FG-SyC does not show clear performance
benefit compared to FG-Trap, it still saves overall
energy significantly. In contrast, FG-Trap is a little
bit worse in energy compared to Coarse in some
cases. Overall, FG-SyC is consistently better than
FG-Trap when both performance and energy are
considered. Detailed results and analysis will be
presented next.

We first show the performance and energy con-
sumption comparison with fixed data size and 2-D
mesh interconnect network. Then, we compare the
speedup with different network configurations (2-D
mesh and hypercube) and different data sizes; we
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also estimate the impact of L2 caches.

5.1. Performance Improvement

Fig. 7(a) shows the breakdown of execution time
for the DNA Chain application. “FG-Trap” corre-
sponds to the baseline, where fine-grained synchro-
nization is implemented on top of cache coherence,
like in the MIT Alewife [29]. “FG-SyC” refers to our
new approach, Synchronization Coherence. From
the result we can see that FG-SyC outperforms FG-
Trap significantly, ranging from 19% to 23% with an
average speedup of 21%.

The execution time is further broken down into
several categories. “Useful” is the time spent on com-
putation. “Cache-misses”, “FG-Sync” and “Bar-
rier” are different sources of overhead. “Cache-
misses” cycles are CPU stalling cycles caused by
regular cache-misses, including both local cache
misses and remote cache misses in the shared mem-
ory multiprocessor system. “Cache-Misses” are de-
termined by local memory access latency, network
configuration, traffic and the remote memory ac-
cess latency. “FG-Sync” represents synchronization
overhead for fine-grained synchronization: either
the cycles spent on a trap to handle fine-grained
synchronization misses for FG-Trap, or the waiting
cycles due to synchronization misses for FG-SyC.
Note that for FG-SyC, there is no need to trap
on synchronization misses, since they are handled
transparently. “Barrier” is the number of cycles
spent primarily on barriers.

From the above results we can see that the
performance improvement primarily comes from
the reduced “Cache-misses” cycles. This is because
FG-SyC generates fewer messages and reduces the
network traffic (as shown in Fig. 7(b), FG-SyC
reduces the number of messages ranging from 21%
to 30%, with an average of 26%). In addition, we can
see that the “FG-Sync” in FG-SyC is smaller than
its counterpart in FG-Trap. This is mainly due to
the fact that FG-SyC handles fine-grained synchro-
nization more efficiently by replacing software traps
with (synchronization) cache misses.

Fig. 8(a) shows the execution time breakdown for
MICCG3D. We evaluated both coarse-grained and
fine-grained versions. The data size is 8 x 8 x 256. In
the figure, “Coarse” represents the coarse-grained
implementation.

‘We can see clearly from the above graphs that fine-
grained synchronization has significant advantage
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over the coarse-grained version. FG-Trap outper-
forms coarse-grained by a factor of 2.4-3.7X. The
numbers are fairly close to those in [13]. FG-SyC
shows additional improvement over FG-Trap. The
speedup over FG-Trap ranges from 3% to 12%, with
an average of 6.7%.

From the execution time breakdown, we can
see that fine-grained synchronization (both FG-
Trap and FG-SyC) reduces the “Barrier” cycles
significantly, which is the main source of the per-
formance improvement. FG-SyC also improves the
performance over FG-Trap by reducing “Cache-
misses” cycles (reflected by the reduced number of
network messages, as shown in Fig. 8(b), because of
the same reason as in the DNA chain application).

Besides the speedup achieved, FG-SyC also
reduces the number of messages (shown in
Figure 8(b)) by 8-16%, with an average of 11%.

Fig. 9(a) shows the performance of LU, on both
coarse-grained and fine-grained versions. The input
data size is 256 x256. In this application, we do not
observe much speedup of FG-SyC over the FG-Trap
baseline. As seen in the graph, the “Barrier” cycles
in the coarse-grained version are mostly converted
to “FG-Sync” for both fine-grained schemes. Also,
we notice that the “FG-Sync” cycles for FG-Trap
and FG-SyC are almost equal. This means that for

this application, those synchronization overheads
are inherent to the application and we cannot do
much about it.

However, FG-SyC can still reduce the number
of network messages (see Fig. 9(b)), which helps
reducing the total power consumption, as we will
shown in the next section. The speedup of FG-SyC
over Coarse ranges from 7% to 24%, with an average
of 17%. In Section 5.3.3, we show that this speedup
could be further improved with L2 caches.

Fig. 10(a) shows the execution time for MST on
both coarse-grained and fine-grained versions. As
mentioned previously, we simulated the application
with up to 32 processors based on the suggestions
from the benchmark developer. The speedup of FG-
SyC is ranging from 14-41% over Coarse and 7-15%
over the FG-Trap baseline. FG-SyC can also reduce
the number of network messages (see Fig. 10(b)) for
up to 7% over FG-Trap (except for the 4-processor
case, where we observe a slight increase in network
messages).

5.2. Energy Consumption

We modified the Wattch simulator [37] to calcu-
late the energy consumption in a multiprocessor.
Energy cost for each processor is calculated indi-
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coherence (FG-SyC).

vidually and then summed up. Energy cost for the
extra hardware such as FE-bits and P-bits in caches
are accounted for in the energy simulation with the
Cacti [38] Model.

To estimate the off-chip message energy cost (in
CPU), we assume that each message costs 64X or
256X of a single word L1 cache access, and present
results for both cases. Similar assumptions on off-
chip memory energy cost have been made in [39].
The actual energy cost for off-chip messages depends
on the number of bits in transition on 10 pads and
specific packaging/implementation details. The 64X
case is more representative of current systems, while
the 256X is a more pessimistic projection for future
generation systems.

The energy results for the DNA Chain application
are shown in Fig. 11. We show breakdown numbers
on energy consumptions for CPU, D-cache and
messages, respectively. All the energy numbers are
collected from Wattch and then normalized to the
FG-Trap total energy cost. The figure shows that
we save a range of 18-22% chip-wide energy across
all processor nodes for the 64X case. This is due
to the elimination of busy waiting and less network
traffic generated by FG-SyC compared to FG-Trap.
The energy savings in CPU are due to the fact
that FG-SyC transformed the busy waiting during
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polling in FG-Trap into synchronization (cache)
misses. While polling wastes significant energy, the
synchronization misses in FG-SyC do not execute
instructions thus being more energy efficient. When
the message energy cost increases to 256X (future
systems), the savings become larger, up to 19-
24%, because FG-SyC also reduces the number of
messages significantly compared to FG-Trap.

Fig. 12 shows the energy results for the applica-
tion MICCG3D, which is normalized to the total
energy cost of the coarse-gained case. The figure
shows that both fine-grained cases are much more
energy efficient than the coarse-grained version. FG-
Trap saves around 6-23% of total energy, while FG-
SyC saves even more, ranging from 11-28% for both
64X and 256X cases. As discussed, the savings for
FG-SyC comes from elimination of busy waiting and
the reduction in the number of messages compared
to the FG-Trap.

The energy results for the application LU are
shown in Fig. 13. The results show that FG-Trap
does not improve energy compared to Coarse. How-
ever, FG-SyC saves 6-10% for both the 64X and
256X cases, compared to both FG-Trap and Coarse,
due to the removal of busy waiting and reduction of
messages. This is an example where FG-SyC reduces
energy consumption significantly although it does
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not achieve much performance speedup over FG-
Trap.

Fig. 14 presents the energy comparison for MST.
FG-Trap only shows slight improvement compared
to Coarse (less than 5%), while FG-SyC achieves up
to 15% overall energy savings due to the same reason
as LU.

5.3. Sensitivity Analysis

5.3.1. Interconnect Network

First, let’s look at how the network configuration
affects the performance. Fig. 15 shows the perfor-
mance speedup obtained for MICCG3D with dif-
ferent synchronization mechanisms and underlying
interconnect configurations. Fig. 15(a) shows the
speedup obtained on a bi-directional wrap-around
mesh network, and Fig. 15(b) shows the speedup on
a hypercube. We can see that the hypercube version
is more scalable, resulting in a higher speedup, since
it has less communication cost. However, we also
find that the speedup of “FG-SyC” over “FG-Trap”
are slightly less in a hypercube network, with an
average of 5%. This is expected, since a hypercube
network has lower message cost (that would dilute
the improvement of FG-SyC due to the reduction of
network messages).

5.3.2. Input Data Size

Fig. 16 shows the speedup (FG-SyC vs. Coarse)
of LU on different data sizes. First, we can see
that for all three data sizes, except 128x128, the
speedup is increased as the number of processors
grows. This is because the synchronization overhead
becomes larger as the machine size increases and
therefore FG-SyC shows more advantage. Across
different data sizes on the same number of proces-
sors, the speedup becomes smaller as the data size
increases. This is because for larger data sizes on a
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given configuration, the execution time is dominated
by computation rather than synchronization and
the benefits of synchronization optimizations are
diluted.

5.3.3. L2 Cache

Due to the complexity of the implementation, we
did not implement a fully-functional coherent L2
cache; instead in this section we try to predict how
the introduction of an L2 cache per node might
affect the above presented results for the FG-SyC
approach.

To show the impact of L2 caches, we first show
the results on SyC based on a perfect L2 cache
with no cache misses; cache coherence cost is also
ignored. The performance numbers, when there is
an L2 cache of a fixed size, should fall between
the numbers presented before with no L2 and the
numbers presented here.

Figure 17 shows the results with an 18-cycle
L2 cache with 100% cache hit rate. In the figure,
for each application, we present the breakdowns
of the execution time as previously shown, and a
comparison of the speedup achieved by FG-SyC over
FG-Trap. We can see that the speedup is typically
better for all four applications, compared to the
numbers presented earlier without L2.

For example, for the DNA Chain application,
we achieve a speedup of 32-38%, with an average
of 35%, compared to the average of 21% speedup
achieved by FG-SyC with no L2. For MICCG3D, the
average speedup of FG-SyC over FG-Trap is up from
6.7% t0 9.4%. The speedup numbers are also slightly
better for LU and MST on average, although the
difference is less than 1% for these two benchmarks.

The reason for the difference is that, with L2
caches, the execution time spent on cache misses
is significantly lower; however, a major part of
performance improvement from FG-SyC comes from
reducing the trap related time of FG-Trap, which
basically stays the same regardless of L2 caches.
Thus the speedup numbers improve because the
total execution time is reduced with L2 caches.
Although the actual numbers will depend on the
real L2 design and implementation, as well as the
characteristics of the applications, systems with L2
caches would have speedups better than the results
shown without L2 and worse than with the perfect
L2 caches shown in this section.
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6. Conclusion

Fine-grained synchronization is a valuable mech-
anism for speeding up parallel execution by avoid-
ing false data dependencies and unnecessary wait-
ing. This paper has presented and evaluated Syn-
chronization Coherence (SyC) - a novel approach,
which integrates fine-grained synchronization with
cache coherence. SyC is in fact a cache coherence
mechanism for a full/empty-tagged shared memory
that treats synchronization misses as cache misses
and enables synchronized memory operations to
be executed transparently without traps. We have
presented architectural support and described the
SyC protocol. We have shown that SyC requires
minimal hardware extension to cache coherence, and
it is transparent to processor nodes.

We have shown that SyC has significant advan-
tage on both performance and energy consump-
tion, compared with traditional and previous fine-
grained synchronization mechanisms. To evaluate
our approach, we have developed a complete sim-
ulation and compilation flow, and have conducted
extensive simulation for a large spectrum of system
configurations. For the applications studied, SyC
improves overall performance by up to 23% over
the previously published fine-grained synchroniza-
tion approach. Systems that have L2 caches would
benefit further: our experiments indicate a speedup
potential of up to 38% for the applications studied.
Our simulation results also show that SyC improves
chip-wide energy consumption by up to 24%, by
reducing busy waiting and network traffic.
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