Cool-Fetch: Compiler-Enabled
Power-Aware Fetch Throttling

Osman S. Unsal, Israel Koren, C. Mani Krishna, Csaba Andras Moritz
Dept. of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA 01003

E-mail: {ounsal,koren krishna,moritz}@ecs.umass.edu

Abstract— In this paper, we present an architecture-
compiler based approach to reduce energy consumption in
the processor. While we mainly target the fetch unit, an im-
portant side-effect of our approach is that we obtain energy
savings in many other parts in the processor. The explana-
tion is that the fetch unit often runs substantially ahead of
execution, bringing in instructions to different stages in the
processor that may never be executed. We have found, that
although the degree of Instruction Level Parallelism (ILP)
of a program tends to vary over time, it can be statically
predicted by the compiler with considerable accuracy. Our
Instructions Per Clock (IPC) prediction scheme is using a
dependence-testing-based analysis and simple heuristics, to
guide a front-end fetch-throttling mechanism. We develop
the necessary architecture support and include its power
overhead. We perform experiments over a wide number of
architectural configurations, using SPEC2000 applications.

Our results are very encouraging: we obtain up to 15%
total energy savings in the processor with generally little
performance degradation. In fact, in some cases our intelli-
gent throttling scheme even increases performance.

Keywords— Low power design, compiler architecture in-
teraction, instruction level parallelism, fetch-throttling

I. INTRODUCTION

Power consumption is becoming an important design cri-
terion. Our previous work explored power reduction in the
caching subsystem by leveraging static information spec-
ulatively[7], [8], [9]. In this paper we apply the same ap-
proach to address chip-wide power reduction in processors.
This framework is based on a tight cooperation and inte-
gration between compiler and architecture.

Specifically, we examine compiler-driven static ap-
proaches for increased energy efficiency with only minor
performance degradation. Our approach is based on the
static prediction of the rate of instructions per clock (IPC)
which is a measure of instruction level parallelism (ILP).
Most current dynamic microarchitectural energy savings
methods depend on analyzing past ILP behavior to predict
future ILP. In contrast, we use static information about
the future ILP that is inherently embedded in the pro-
gram. The compiler-driven IPC prediction approach cou-
pled with fetch-throttling forms the Cool-Fetch framework.
To the best of our knowledge, this is the first work that uses
compiler-driven static-only IPC prediction for out-of-order,
superscalar processor energy savings. In this paper,

e We develop a compiler-driven static IPC prediction
scheme that is based on dependence testing and simple
heuristics in compiler backends. This information is a mea-

Supported in part by NSF grant EIA-0102696. Manuscript sub-
mitted: 22 Mar. 2002. Manuscript accepted: 2 Apr. 2002. Final
manuscript received: 9 Apr. 2002.

sure of the upper-bound of available ILP.

o We use this prediction scheme to drive our fine-grained
fetch-throttling energy-saving heuristic. We have experi-
mented with a variety of architectural configurations using
Spec 2000 benchmarks. We obtain up to 15% total energy
savings in the processor with generally little performance
degradation.

o For some specific applications our compiler-driven fetch-
throttling scheme actually results in increased performance.
We discuss the reasons behind this somewhat surprising
result.

e We compare the energy and performance aspects of
Cool-Fetch with previously-proposed microarchitectural-
only fetch-throttling mechanisms.

II. MOTIVATION

In Figure 1, we present a snapshot from the execution
profile of the Spec 2000 application equake. The graph
shows the actual IPC against our compiler-driven static
IPC prediction as averaged over windows of 100 cycles each.
Since predicted IPC provides a reasonably accurate esti-
mate of actual IPC, we are motivated to use the static
prediction for energy savings by throttling resources when
they are not needed.

Predicted—IP

IPC

0 .

999.140 999.142 999.144 999.146 999.148 999.150
Program Time (X 10° Cycles)

Fig. 1. Predicted versus actual IPC for the equake Spec 2000 appli-
cation. Each point on the x-axis is an average of 100 cycles.

III. IPC-PREDICTION IMPLEMENTATION

We use a static approach to IPC prediction. It is suffi-
ciently accurate, is easy to implement, to extend and re-
tune. In our implementation, we only consider true data
dependencies (Read-After-Write or RAW) to check if in-
structions depend on each other or can be executed in
parallel. As expressed by Tune et al. [6], the bottleneck
for many workloads on current processors is true depen-
dencies in the code. While antidependencies (Write-After-

Read or WAR) or output dependencies (Write-After-Write
or WAW) could be eliminated by register renaming, even
infinite resources cannot eliminate true dependencies.

It is also possible to handle false dependencies in the
compiler passes: this would be a viable option if the pro-
cessor was severely constrained in its register renaming re-
sources. However, contemporary processors usually have
enough resources to eliminate most false dependencies. Of
course, there are other, dynamic, factors that influence
IPC, such as branch prediction or cache misses. Surpris-
ingly, in our experiments, we found that the impact of cache
misses on the efficiency of our static-only approach is ac-
tually smaller than envisioned. We next discuss the com-
piler and architectural level issues related to static IPC-
prediction.

A. Compiler-Level Implementation

We use SUIF/Machsuif as our compiler framework.
SUIF makes high-level passes while Machsuif makes
machine-specific optimizations. The final Machsuif pass
produces Alpha assembly code. We added new passes to
both SUIF and Machsuif to annotate and propagate the
static IPC-prediction. Our IPC-prediction is at the loop
level: loop beginnings and ends serve as natural bound-
aries for the prediction. The high-level loop annotation
pass works with expression trees and traverses the struc-
tured control flow graph (CFG) of each routine.

The other added pass; the IPC-prediction pass, is a
lower-level MachSuif pass that is run just prior to assembler
code generation. This way, we guarantee that no compiler
level optimizations such as instruction scheduling, which
might result in instructions being moved and/or modified,
are performed after our pass. In the IPC-prediction pass,
we identify true data dependencies at memory and regis-
ter accesses. Since the approach is speculative and is not
required to be correct all the time, we employ a straight-
forward, easy-to-implement memory dependence analysis
at the instruction operand level. A non-speculative, ex-
haustive, memory dependence approach would require so-
phisticated alias analysis. However, such analysis is un-
necessary: our results suggest that the speculative scheme
performs sufficiently well. The pass is over the linear in-
struction list of each routine. We divide the program into
annotation blocks. Each block carries a unique annotation
in the beginning of the block, which is simply a count of the
instructions in the block. Whenever we come across a true
data dependency, we end the block. All the instructions in
the block except the last one can potentially be issued in
the same cycle. Note that we also end our prediction block
at the beginning and end of each loop.

B. Architectural-Level Implementation

An important distinction between Cool-Fetch and dy-
namic microarchitectural-level throttling schemes is that
the throttling decision is made statically by the compiler in
Cool-Fetch. A final pass examines each marker instruction
and if the IPC-estimation is below a threshold, it inserts
a throttling flag at that point. It is this throttling flag,

not the marker instruction, that is passed to the hardware
layer. Note that the flag requires only a single bit. If
enough flexibility exists in the ISA of the target processor,
then the flag can be inserted directly into the instructions
eliminating the need for a special instruction. In our exper-
iments, we take this approach and also consider the addi-
tional power dissipation stemming from this extension: see
Section ITI-C. If there is not enough flexibility in the ISA,
then special throttling flag instructions should be added.
This may raise the question of increased code size due to
the additional instructions. Although we do not imple-
ment this model, we conducted an analysis of worst-case
code size increase due to this approach: we assume that
every IPC-estimation marker results in a throttling flag.
This is unrealistic but gives an upper bound. The average
code size increase is modest at 5.2%.

The fetch-throttling scheme latches the compiler-
supplied throttling flag at the decode stage. If the pre-
dicted TPC is below a certain threshold, then the fetch
stage is throttled, i.e., new instruction fetch is stopped for
a specified duration of cycles. The rationale is that fre-
quent true data dependencies which are at the core of our
IPC-prediction scheme, will cause the issue to stall. There-
fore, the fetch could be throttled to relieve the I-cache and
fetch/issue queues and thereby save power without paying
a high performance penalty. We have done extensive exper-
iments to determine the threshold value and the duration.
The results suggested that a threshold of 2 and duration
of 1 is the best choice for our configuration. That is, we
stop instruction fetch for 1 cycle when we encounter an
IPC prediction that is at most 2. When the throttling flag
is set, the fetch stage is throttled by using a clock gater.
To prevent glitches, a low-setup clock gater is used which
allows the qualifier to be asserted up to 400ps after the
rising clock edge without producing a pulse [4].

The system model is a typical out-of-order superscalar
processor. Table I contains a description of the baseline
architectural parameters. The baseline case reflects the
trend towards wider issue as evidenced by the 8-way Alpha
21464.

General Parameters 0.18 pm, 2V, 1.5GHz
Issue 8-way Out-of-order
Fetch Queue Size 32

Instruction Queue Size | 128

Branch Prediction 2K entry bimodal
Int. Functional Units 4 ALUs, 1Mult./Div.
FP Functional Units 4 ALUs, 1Mult./Div.
L1 D- and I-cache Each: 128Kb, 4-way

Combined L2 cache 1Mb, 4-way

L2 cache hit time 20 cycles

Main memory hit time | 100 cycles
TABLE 1

BASELINE PARAMETERS

C. Architectural Simulator Setup

We use Wattch [2] to run the binaries and collect the
energy results. Wattch is based on the Simplescalar frame-
work. Simplescalar has been modified to recognize the
compiler-generated IPC predictions. In Wattch, we use the
activity-sensitive power model with aggressive conditional
clocking. The rationale for this choice is to compare our
fetch-throttling framework to an unthrottled baseline that
is already power-efficient. Wattch can be retuned for state-
of-the-art technology scaling parameters, we use a 0.18 um,
1.5Ghz, 2V process. We extended the power dissipation
model in Wattch so that it accounts for the extra power
overhead due to the 1-bit throttling flag field in the dis-
patch stage.

IV. EXPERIMENTS

A. Benchmarks

We use the Spec CPU2000 benchmarks in our exper-
iments. We randomly select eight applications. The first
five (bzip2,gap,mcf,parser,vpr) are from the Integer and the
last three (ammp,art,equake) are from the Floating Point
benchmarks. We skip past the initialization stage and sim-
ulate the next 1 billion instructions using the reference in-
put set. To skip, we fast-forward by the number of instruc-
tions as prescribed by Sair et al. [5] in their Spec CPU2000
initialization segment analysis. If the prescribed number is
less than 1 billion, we fast-forward by 1 billion instructions.

B. Baseline Results

We first present our results for the baseline case, see
Figure 2. The compiler IPC-prediction driven front-end
throttling yields excellent results for this architectural con-
figuration: on the average, we get 8% processor energy sav-
ings with a performance degradation of 1.5%.

To illustrate how fetch-throttling saves resources, we

Processor Energy Savings
Decreasein IPC

Percent(%)

Vpr Parser Mcf Ammp Art Equake Gap Bzip2

Fig. 2. Impact of compiler IPC-prediction driven fetch throttling.
studied the percentage decrease of the fetch and instruc-
tion queue occupancy for the benchmarks. The percent
of time that the queues are full is decreased by 14.7% for
fetch; and 7.7% for issue. The average queue size is de-
creased by 10.4% for fetch; and 2.0% for issue.

We now examine the percentage of energy savings per
processor block: see Figure 3. As expected, the block with

the highest overall savings is the fetch stage. However, note
that even the issue stage benefits from fetch-throttling.

60
50 B
40 Fetch]
g 30 ecode i
% Issue
2 20 Clock i
& eg. File
10 I B
0 qu
-10

| 1 | 1 1 1 1 1
Vpr Parser Mcf Ammp Art Equake Gap Bzip2

Fig. 3. Percentage Energy Reduction in Processor Blocks.

C. Comparison With a Dynamic-Only Architectural Scheme

We now compare Cool-Fetch to two previously proposed
microarchitectural-level front-end throttling schemes: De-
code/Commit Rate (DCR) and Dependence-Based (DEP)
heuristics by Baniasadi et al. [1]. Both DCR and DEP
are also fine-grained schemes; however they solely rely on
dynamic information. DCR throttles fetch when the num-
ber of instructions passing through decode exceeds signif-
icantly the number of instructions that commit. As such
DCR exposes a purely dynamic property by inhibiting fetch
during branch mispredictions. DEP analyzes the decoded
instructions every cycle and throttles fetch if the number of
dependencies exceeds a threshold of half the decode width.
Similar to cool-fetch, DEP is dependency-based, however
DEP makes use of run-time information while Cool-Fetch
utilizes only compile-time information. We implemented
DCR and DEP following the guidelines in [1]. The per-
formance results are given in Figure 4. By contrast with
DCR and DEP, Cool-Fetch substantially preserves the orig-
inal performance of the applications. The energy results in
Figure b5 indicate that on the average, Cool-Fetch is as
energy-efficient as DCR. Note that for some applications
such as the Parser, DCR saves more energy, however, the
energy savings come at the expense of performance, i.e.,
DCR trades off performance for energy. On the other hand,
DEP saves more energy than Cool-Fetch: 12.1% on aver-
age. However, DEP incurs a higher performance penalty,
an average degradation of 5.6%.

D. Sensitivity Analysis

One would expect that since our energy-saving heuristic
depends on a static approach, dynamic program behavior
such as cache misses and branch mispredictions would di-
lute the efficiency of our method. Somewhat surprisingly,
this isn’t the case. In Table II, we present the data cache
miss rates. The results are in agreement with data gath-
ered from a recent Spec 2000 cache performance analy-
sis [3]. Consider the very high miss rates for the MCF,
AMMP and ART. This suggests that extraction of avail-
able ILP is effected by dynamic memory performance in

14
12 r b
§ 10 F DCR i
@) Cool-Fetch
& 8
k=
Q9 6
S
S 4
[a)
2

Vpr Parser Mcf Ammp Art Equake Gap Bzip2

Fig. 4. Performance of Cool-Fetch versus DCR and DEP.

25
_ 207 DEP
R
= DCR
en 15
g Cool-Fetch
5:)
2 10
9
3
E=}
=5

Vpr Parser Mcf Ammp Art Equake Gap Bzip2

Fig. 5. Energy Efficiency of Cool-Fetch versus DCR and DEP.

those benchmarks. Yet, as seen from Figure 2, the per-
formance degradation due to our scheme for those appli-
cations is not worse compared to other, lower miss-rate
applications. For branch mispredictions, we experimented
with a larger and better hybrid branch predictor (64K bi-
modal + 64K Gshare with 64K selector). Compared with
the unthrottled case with the same branch predictor config-
uration, the 2K bimodal predictor results in 1.5% average
performance degradation and 8% energy savings, while the
hybrid predictor has 1% performance degradation and 7.5%
energy savings.

We now present, the results for more constrained re-

Benchmark | Rate || Benchmark | Rate

VPR 1.1 || PARSER 1.5

MCF 29.2 || AMMP 14.3

ART 16.8 || EQUAKE 1.1

GAP 0.3 || BZIP2 2.0
TABLE 11

MISS RATES FOR THE BASELINE L1 DATA-CACHE (128K, 4 WAY)

sources. In Figure 6, the fetch and instruction queues are
8 and 32 instructions, respectively. We again get excel-
lent results: 6.13% energy savings with 0.37% performance
penalty. For the Ammp and Bzip2 applications, we even
have a slight performance gain with our compiler-directed
throttling heuristic. By fetch-throttling at times of low-
ILP, the branch prediction can be more effective. Indeed,
for those applications the ratio of committed to fetched in-
structions is higher for the throttled configuration. This,
in turn leads to slightly increased performance. To check

the narrow-issue case, we also replicated our experiments
for a 4-way issue configuration, the results are similar and
not included here for the sake of brevity.

12
10 [

Processor Energy Savings
L Decrease in IPC \
0

~ O o=

Percent(%)

Vpr Parser Mcf Ammp Art Equake Gap Bzip2

Fig. 6. Compiler IPC-prediction driven fetch throttling for smaller
fetch and instruction queues.

V. DISCUSSION

In this paper, we have shown that compiler-driven static
IPC prediction is a powerful engine for chipwise energy sav-
ing heuristics in superscalar out-of-issue processors. We re-
port up to 15% processor energy savings with Cool-Fetch.
The impact on performance is minimal and depending on
the application, the method can even lead to performance
improvements. We are extending our experiments by us-
ing deeper pipelining and more aggresive branch predic-
tors in our baseline. We will also include the MediaBench
benchmarks and use different thresholds and durations for
throttling. We are currently investigating applying simi-
lar compile-time approaches to back-end energy optimiza-
tions which require slightly different, coarser granularity,
schemes.

REFERENCES

[1] Baniasadi A., Moshovos A., “Instruction Flow-Based Front-
end Throttling for Power- Aware High-Performance Processors,”
Proceedings of the International Symposium on Low Power Elec-
tronics and Design, ISLPEDO1, August 2001

[2] Brooks D., Tiwari V., Martonosi M., “Wattch: A Framework
for Architectural-Level Power Analysis and Optimizations,” Pro-
ceedings of the 27th International Symposium on Computer Ar-
chitecture, ISCA’00, June 2000

[3] Cantin J. F., Hill M. D., “Cache Performance for Selected SPEC
CPU2000 Benchmarks,” Computer Architecture News, Vol. 29,
No. 4, September 2001

[4] Kever W, et al., “A 200MHz RISC Microprocessor with 128kB
On-Chip Caches,” Proceedings of the International Solid-State
Circuits Conference, ISSCC-97, February 1997

[5] Sair S., Charney M., “Memory Behavior of the SPEC2000
Benchmark Suite,” IBM T. J. Watson Research Center Techni-
cal Report, 2000

[6] Tune E., Liang D., Tullsen D. M., Calder B., “Dynamic Pre-
dictions of Critical Path Instructions,” 7th International Sym-
posium on High Performance Computer Architecture, HPCA7,
January 2001

[7] Unsal O.S., Wang Z., Koren 1., Krishna C.M., Moritz C.A., “On
Memory Behavior of Scalars in Embedded Multimedia Systems,”
Workshop on Memory Performance Issues, ISCA28, June 2001.

[8] Unsal O.S., Ashok R., Koren I., Krishna C.M., Moritz C.A.,
“Cool-Cache for Hot Multimedia,” 3/th Annual International
Symposium on Microarchitecture, MICRO34, December 2001

[9] Unsal O.S., Koren I., Krishna C.M., Moritz C.A., “The Minimax
Cache: An Energy-Efficient Framework for Media Processors,”
8th International Symposium on High-Performance Computer
Architecture, HPCAS8, February 2002

