An Analysis of Scalar Memory Accesses
in Embedded and Multimedia Systems*

Osman S. Unsal!, Zhenlin Wang?, Israel Koren!,
C. Mani Krishna!, Csaba Andras Moritz!

! Department of Electrical and Computer Engineering,
2 Department of Computer Science,
University of Massachusetts, Amherst, MA 01003

Summary. In an earlier paper about the FlexCache project [24], we described our
vision of a multipartitioned cache where memory accesses are separated based on
their static predictability and memory footprint, and managed with various compiler
controlled techniques supported by instruction set architecture extensions, or with
traditional hardware control.

In line with that vision, this paper describes our work in progress related to the
memory performance and memory management of scalars. Our focus in this paper
is embedded and multimedia architectures, but the methodology described can be
applied to other classes of applications.

In particular, we establish the minimum size of a memory partition that would
allow us to map and manage all scalar accesses in a program statically, and describe
compiler techniques to automate the extraction of this information. We evaluate the
impact of register file size on the volume of scalar related memory accesses, and its
impact on the applications’ overall cache performance. We study the cache behavior
of scalar accesses for embedded architectures, including reduction in cache misses
due to separation of scalars from other types of memory accesses. Additionally, we
develop an energy-efficient data caching strategy for multimedia processors, based
on our scalar partitioning approach.

1 Introduction and Motivation

The recent proliferation of palmtops, MP3 players and internet-enabled wire-
less phones has ignited interest in embedded and multimedia systems. These
systems have to be fast and energy efficient. As such, they have tight mem-
ory/processing requirements. Therefore, understanding their memory/caching
behavior is of paramount importance.

In an earlier paper about the FlexCache project [24], we described our
vision of a multipartitioned cache where memory accesses are separated based

* Supported in part by NSF grant EIA-0102696.

2 Unsal, Wang, Koren, Krishna, Moritz

on their static predictability and memory footprint, and managed with various
compiler controlled techniques. This paper addresses the cache behavior of
scalar accesses and its memory footprint in order to enable a fully static
memory management in a logical memory partition.

Although prior studies into memory behavior of arrays for embedded and
multimedia systems have been conducted, the study of the memory footprint
of scalars has lagged behind. Here we report our ongoing work in closing this
gap. This paper presents techniques and results for scalar memory accesses
in embedded and multimedia systems. Our preliminary results show promise
and we hope that this work will heighten interest in this area.

This research spans compiler and architectural domains. Our particular
contributions in this paper are threefold:

e First, we experimentally establish the memory size requirements of scalars
for embedded and multimedia systems. We present a new compiler algo-
rithm to automatically extract this information, as would be required in
a multipartitioned cache.

e Second, by separating scalar accesses from array accesses, we expect de-
creased cache interference and improved static predictability. This aspect
is especially important for hard deadline embedded systems.

e Third, we study the energy implications of partitioning the scalars from
non-scalars in media processors. In particular, we compare the energy con-
sumption of a regular data cache with a multipartioned one in which scalars
are exclusively assigned to scratchpad memory.

The rest of this paper is organized as follows. In Section 2, we provide a
brief literature survey and reiterate our motivation. Section 3 describes the
experimental setup, we include baseline cases for both embedded and media
processors. Section 4 provides the results, we consider separate case studies
for embedded (Section 4.4) and media (Section 4.5) processors. In Section 5
we conclude with a brief summary and a synopsis of future work.

2 Previous Work

This work builds upon the framework in [23, 24]. Previous memory behavior
research effort primarily targeted array structures [17, 26]. Delazuz et al. [12]
discuss energy-directed compiler optimizations for array data structures on
partitioned memory architectures; they use the SUIF compiler framework for
their analysis. On the other hand, architectural support to improve memory
behavior include split caches which were discussed in [22]. Albonesi [2] pro-
posed selective cache ways, a vertical cache partitioning scheme. Benini et al.
[4] discuss an optimal SRAM partitioning scheme for an embedded system-on-
a-chip. Kin et al. [16] study a small LO cache that saves energy while reducing
performance by 21%. Lee and Tyson [19] use the mediabench benchmarks and
have a coarse-granularity partitioning scheme: they opt for dividing the cache

Analysis of Scalar Memory Accesses 3

along OS regions for energy reduction. Chiou et al. [10] employ a software-
controlled cache and use a cache way based partitioning scheme. A recent
paper by Huang et al. [15] also uses a way-prediction scheme; their cache
partitioning includes a specialized stack cache and compiler implementation
concerns are addressed. Mueller [25] sketched some broad ideas on compiler
support for cache partitioning. Combined compiler/architectural efforts to-
ward increasing cache locality [21] have also exclusively focused on arrays. For
multimedia systems, one previous work has considered reconfigurable caches
[28], using the recently introduced Mediabench benchmark in the performance
analysis, with comments on compiler controlled memory. Burlin [9] concen-
trates on optimizing stack frame layout in embedded systems. Cooper and
Harvey [11] look at compiler-controlled memory. Their analysis includes spill
memory requirements for some Spec ’89 and Spec '95 applications. Engblom
[13] and Lee et al. [18] discuss why Spec is not a suitable benchmark for
embedded systems.

The above research, although preoccupied primarily with memory behav-
ior of arrays, provided valuable pointers for our work. In this paper we consider
scalar memory accesses, not only array or spill memory accesses, and we tar-
get embedded systems running a suite of media applications. We develop a
compiler heuristic to calculate the memory requirements of scalars and dis-
cuss the impact of architectural design choices for embedded and multimedia
systems on scalars.

3 Experimental Setup

We use the recently developed Mediabench benchmarks [18] in our experi-
ments. Mediabench is a collection of popular embedded applications for com-
munications and multimedia. We chose Mediabench, since other benchmarks
such as SPECint, DSPstone or Dhrystone are not suitable for embedded or
multimedia systems [6, 13].

We needed a detailed compiler framework that would give us sufficient
feedback, is easy to understand, and allow us to change the source code for
our modifications. With this in mind, we chose the SUIF/Machsuif suite as
our compiler framework. SUIF [29] does high-level passes while Machsuif [20]
makes machine specific optimizations. Our main focus is Machsuif’s register
allocator pass, Raga. Raga makes the transition from virtual registers into real
registers and performs register allocation. The allocation uses a graph coloring
heuristic to assign registers to temporaries. We have made modifications to
Raga to annotate scalar memory accesses. The resulting annotated assembler
code targets the Alpha processor. We have amended the assembler code by
inserting NOP instructions around the scalar memory operations, thus mark-
ing them. The scalar memory accesses consist of spills and register promotion
related memory accesses.

4 Unsal, Wang, Koren, Krishna, Moritz

We used the Simplescalar tool suite [7] to run the Alpha binaries and
collect the results. We have modified Simplescalar to recognize the scalar
memory operations in the marked code. Simplescalar was modified to squash
the marker instructions on fetch, therefore the marker instructions do not
impact the results in any way. Our baseline machine model is a single-issue
in-order processor. Lee et. al. [19] use an identical Simplescalar configura-
tion in their power dissipation analysis of region-based caches for embedded
processors. Most embedded processors employ an in-order microarchitecture.
Using an out-of-order, non-blocking load type of microarchitecture would, to
some degree, decrease the performance penalty of scalar/non-scalar conflict
cache misses. We use the Wattch [8] tool suite to run the binaries and collect
the energy results. Wattch is built on top of the Simplescalar framework. We
use the activity sensitive conditional clocking power model in Wattch, i.e., the
cache consumes power when it is accessed.

For embedded processors, we did a survey of cache sizes to determine the
baseline. As Table 1 indicates, embedded processor data cache sizes are usually
small. Therefore, we have selected a data cache size of 2K for our experiments
with embedded systems.

Table 1. Data cache sizes for typical embedded CPUs. SRAM scratchpad areas are
available in the Samsung ARM?7, Hitachi SH2 and Fujitsu Sparclite.

Processor Cache Size Processor Cache Size
Samsung ARM7 2K SparcLite 2K
PA-RISC HP 1K to 2K Power PC 403GA 1K
Hitachi SH-II 4K unified Coldfire 5102 1K
Embedded Pentium 8K MIPS Jade 1 to 8K
Sandcraft SR-1-GX 8K

On the other hand, as Table 2 indicates, the trend is towards larger caches
for media processors. Therefore, for media processors we have selected a
64Kbyte 2-way cache as our baseline. The table also indicates that media
processors do not typically have L2 data caches. Therefore, we only have L1
caches in our baseline architecture. However, our framework is applicable to
media processors with L2 caches as well. In this case, one issue that must be
addressed is the consistency between the L2 cache and the L1 data + scratch-
pad. Namely, the block fetched from L2 into the L1 caches could contain a
mix of scalar/non-scalar data. We avoid this problem by keeping the block
sizes the same across the caches. If the block sizes were different, then the
issue could be addressed by clustering the scalar data to the beginning of the
address space and padding them appropriately to the size of the L2 cache
block size and boundary.

Analysis of Scalar Memory Accesses 5

Table 2. Cache configurations for typical media processors.

Processor L1 Cache L2 Cache
ARM ARM10 32K None
Transmeta Crusoe TM3200 32K None
Transmeta Crusoe TM5400 64K 256K
Intel StrongARM SA-110 16K None
Equator Map-CA 32K None
Intel StrongArm 110 16K None
Intel StrongARM 1100 8K None

4 Results

4.1 Motivational Example

We start with a motivational example. Consider the sample program in Fig-
ure 1. The program consists of x scalar variables being written in a chain-
dependent fashion, after which a single array element is written per loop
iteration. We define the scalar miss ratio to be the ratio of scalar misses to
total misses. Consider the scalar miss ratio for 32 scalars which is 34%. When
we increase the number of scalars to 64 the ratio increases to 46%, although
the memory footprint of 32 additional scalars is small. This points to the fact
that interference between the scalar and array accesses are chiefly responsible
for the increase in the scalar miss ratio. Therefore, if we can separate the
array accesses from the scalar accesses, this ratio and the overall miss rate
will decrease. Next, we present our results based on Mediabench applications
for embedded systems.

Number of scalar temporaries

m%gé,){{ = 64 | 9%
scalar accesses; Scalar | 034 | 046 | 047
array_access|]; ~ MiRate
} Number of scalar temporaries

} [3 64 | 9%

155 3.10 4.65

Scalar
Footprint%

Fig. 1. Scalar misses for the synthetic example. Here the integer array is of size
2048, and the columns denote the number of scalar variables in the example. Scalar
operations are of the form: Variable,+1 = Variable, F constant. There is a single
array access per loop iteration. The loop is iterated 100000 times. The cache is
2K-direct mapped.

6 Unsal, Wang, Koren, Krishna, Moritz
4.2 Memory Size

We use two yardsticks for experimental evaluation of the scalar memory size
requirements of media applications. The first of these is the static memory
evaluation. It is static in the sense that the results were extracted by a compile-
time analysis of assembler code. We isolated the scalar memory operations in
every routine. We then determined the granularity of data by instruction
analysis, i.e., the granularity is 8 if the move is a quadword instruction, 2 if it
is a word instruction, and so on. We then identified the unique scalar accesses
by counting multiple accesses into the same memory location only once and by
taking the maximum of the pertaining granularities. The results given in the
first column of Table 3 indicate that memory size requirements are modest.

Table 3. The Memory Size Requirements.

(In Bytes) Static Dynamic (In Bytes) Static Dynamic
ADPCM 0 0 EPIC 321 203
G721 Encode 48 32 GSM 202 146
JPEG Encode 502 83 MPEG Encode 2125 604
PEGWIT 98 16 RASTA 618 152
PGP 394 358 MESA 2191 770

However, the static estimate is pessimistic since not all of the data space
is traversed during execution. We therefore, developed a second yardstick, a
dynamic memory evaluation which provides a tighter, more robust bound.
We recompiled the Mediabench benchmarks to record runtime routine use
information. We executed each benchmark with its default input set and ex-
tracted the dynamic call-tree information by using the gprof profiling utility.
Then, for every routine we noted the scalar memory requirements as in the
static technique. Traversing the tree from the root to each leaf, adding up the
unique scalar accesses from each routine, and finding the critical path, i.e.,
the path with the maximum size requirement, yields the result. We supply
the dynamic call-tree for the EPIC application in Figure 2 as an example of
this process. The memory requirements thus obtained are shown in the second
column of Table 3. The results suggest that the memory footprint of scalars
in media applications for embedded systems is quite small. These results will
guide the choice of our architectural optimization schemes. We next present
our compiler technique to automate the scalar memory size estimation.

Intuitively, the upper bound of the size of the scalar buffer is the maximum
of the distinct scalars along all program execution paths. An algorithm that
accurately calculates this bound needs inter-procedural analysis and a complex
data-flow analysis. Here we present a good approximation. Our algorithm
conservatively assumes that the scalars along all paths are distinct. It simply
adds the number of bytes needed for each scalar. Of concern here are loops in

Analysis of Scalar Memory Accesses 7

C)
@

40 @@

20 37 38 39 8 32 33 3435 36 29 16 10 18@

\/\ 77 /]

24 25 28 31 13 23 27

@40

59
41

13

Fig. 2. Call-Tree and the Critical Path for the EPIC benchmark. Here the routines
are numbered from 1 (the function main) to 60. The routines with scalar memory
accesses are circled and the path with bold lines is the critical path.

the control flow graph and recursive calls in the call graph. We can reuse the
scalar space for loops and need only count it once. To accomplish this, the
algorithm first marks back-edges in the control flow graph which are not going
to be traversed. For recursive calls, when there is no register promotion on
stack accesses, such as parameters and local variables, the compiler can still
ignore the recursion because the scalar buffer can be reused. Otherwise, it will
be impossible to compute the upper bound because the depth of recursion is
usually unknown at compile time. However, stack accesses for recursive calls
usually have no reuse. We can assume that the buffer replacement policy can
take care of those scalars. Therefore, in our algorithm, we also count the space
for recursive calls only once by ignoring back-edges in the call graph.

Our algorithm is divided into two phases. The first phase calculates the
bound for each routine, ignoring all routine calls. The second phase traverses
the call graph to compute an upper bound for the whole program. See Al-
gorithms 1 and ?? for the flow of phases 1 and 2, respectively. In these
algorithms, we assume there are three attributes for each basic block and

8 Unsal, Wang, Koren, Krishna, Moritz

call node, resolved, scalarBound, and localScalarSize. The localScalarSize of
a basic block is the total number of bytes for all scalars in the basic block.
The localScalarSize of a routine is its scalar buffer upper bound without tak-
ing routine calls into account. The scalarBound of a basic black is the scalar
bound along all simple paths from the entry block to the current block in the
control flow graph. The scalarBound of a routine is the scalar bound along all
simple paths from the main routine to the current routine in the call graph.
We say that a basic block or a routine is resolved when its scalarBound is
known. Assuming there are N routines in a program and the maximal num-
ber of basic blocks of a routine is M, then the complexity of the algorithms
is O(NM? + N?).

Algorithm 1 Find Routine Scalar Memory Requirement from CFG
Require: localScalarSize of block
/* Phase 1 */
/* For each routine, traverse its control flow graph */
for each routine do
calculate scalar bound for each basic block;
mark back edges in CFG;
/* Add the entry back block to workList */
E = entry basic block;
E.scalarBound = E.localScalarSize;
E.resolved = true;
workList = successors of E;
while lempty(workList) do
B = next element in workList;
allResolved = true;
maxBound = 0;
/* check if all B’s predecessors are resolved */
for each predecessor P of B do
if the edge (P,B) is not marked and P is not resolved then
allResolved = false;
break;
else
maxBound = max(maxBound, P.scalarBound);
end if
end for
if allResolved then
remove B from workList;
B.resolved = true;
B.scalarBound = maxBound + B.localScalarSize;
add all unresolved successors of B to workList;
end if
end while
set localScalarSize of the current routine as scalarBound of its exit block.
end for

Analysis of Scalar Memory Accesses 9
4.3 Register File Size

For memory analysis of arrays, optimizing the cache is more important than
the register file architecture, since array accesses seldom use registers. How-
ever, for scalars the situation is different. The register file size can have a direct
impact on spills and thus impact performance. We therefore, analyze the im-
pact of register file sizes on scalars. We take a two-step approach: first, we do
a survey of the register file sizes for current embedded CPUs and use these
results to drive our experiment. Second, we gauge the impact of expanded
register file sizes in future embedded processors.

Table 4 shows the register file sizes on some typical embedded CPUs: the
size ranges between 16 and 32 except for the embedded Pentium which has
8 general-purpose registers. We therefore, varied the register file size from
16 to 32 in our experiments. We modified Machsuif passes and architectural
definitions to output binaries for different register file sizes. Then, we noted
the static number of scalars inserted into the instruction stream. The results in
Figure 3 show that there is a considerable number of scalar memory accesses
for 16 registers. Another point is that for some particular benchmarks (e.g.,
JPEG Encode), the number of scalar memory accesses is more dramatically
decreased than others as more registers become available. This is because the
register pressure is more unevenly distributed in those benchmarks, i.e., only a
few routines exhibit intense register pressure. Once those are relieved through
additional registers, the decrease in scalar register spills is more steep.

Table 4. Integer Register File Sizes in Current Embedded CPU’s.

Processor Register File Size Processor Register File Size
Samsung ARM7 15 SparcLite 32
PA-RISC HP 16416 Power PC 403GA 32
Hitachi SH-II 16 Coldfire 5102 16
Embedded Pentium 8 MIPS Jade 32
Sandcraft SR-1-GX 32

Usually, the current methods and techniques used in general microproces-
sors migrate to embedded systems with a couple of years time lag. We believe
that the integer register file sizes will follow the same trend. Therefore, we
project the embedded CPU integer register file size to grow to 64, 128 and
maybe 256. We extended our analysis by modifying Machsuif to output code
for larger register file sizes. The results are shown in Figure 4. Note that for
large register file sizes all the register spills are eliminated, the only remaining
scalar memory operations are register promotion related; this is the reason for
the flattening out of the scalar memory accesses. The implication is that, as
far as scalars in media applications are concerned, increasing the register file
size will not bring any additional benefits. This is especially true for register

10 Unsal, Wang, Koren, Krishna, Moritz

12000 T 60 T
PGP EPIC
10000 - ,/ PEGENcote 1 sof MPEG Decode
g 8000 |- MPEG Decode % wl 4 / ADPCM Decode
g ‘
B
S ewo| CSM 3
B PIC 2
3% 4000 - . g
a0k N T/ z
A x AT G g
. i L Sy 7 SR, i
14 16 20 4 3 0 50 150 2 250 ES
Register Size Register Size
Fig. 3. Number of Scalar Memory Ac- Fig. 4. Percentage of Scalar Memory
cesses With Register File Size Accesses for Extended Register File

Size

file sizes larger than 64. Thus, we experimentally establish what has been an
industry insight with general-purpose CPUs [5]. This provides a guidance to
the designers of future embedded/multimedia CPUs: the number of integer
general-purpose registers should be at most 64, the additional chip real es-
tate could be devoted to other functional units (e.g., caches) that offer better
incremental performance.

Our analysis also includes a cross-architectural comparison as seen in Fig-
ure 5. We used an Intel X86-family targeted version of Simplescalar for this
analysis. The 8-register X86 has significantly more scalar memory accesses
than the 32-register Alpha. This is due to Machsuif’s register allocator, Raga.
Raga is based on a graph coloring heuristic and as argued in [1], register al-
location based on graph coloring is sensitive to the number of registers, in
particular when the number of available registers is low. Here, we experimen-
tally verify this argument. Therefore, compiler designers for embedded CPUs,
which typically have fewer registers, should develop new register allocation
heuristics. Work in this direction has already started [1]. We also comment on
an important property leading to a dual conclusion. Sometimes, increasing the
register file size can increase scalar memory accesses. This may seem coun-
terintuitive at first. However, consider Figure 6 for the MPEG benchmark.
As the register size is increased from 28 to 32, the number of scalar memory
accesses actually increases. This is due to the graph-coloring heuristic used in
Raga to assign registers. The use of this heuristic creates a phenomenon sim-
ilar to the Belady anomaly in paging [3]. The conclusion that can be drawn:
embedded CPU designers should be aware of the characteristics of their target
compiler in choosing their design point. In summary, the above experiments
show that the compiler/architecture coupling in embedded systems is stronger
than previously assumed and should be considered at the design phase.

4.4 Case Study: Scalar Data Remapping for Embedded Processors

We assume that the reorganization and separation of scalar and array accesses
are compiler level tasks. As mentioned in Section 2, there are several cache

Analysis of Scalar Memory Accesses 11

180 - T T T 6000
160 b
&] 5000 - MPEG Encode
g 120 4 §7
< | S aooor
8ol f £
§ g 3000 T MPEG Decode
g8]
5
g 40r 7 gg 2000 +
sreg s Iore P 24 2 e ! ‘ .
reg.. reg. reg. reg. reg. reg.
i A|Sﬁa A|§ﬁa Alpha Alpehga iﬁ?ﬁ% 1 Numzl:())er of GmaéARerose Rea?sters %
Fig. 5. Scalar accesses for Intel-X86 Fig. 6. Effect of register coloring
and Alpha heuristic

reorganization options for scalars: vertical or horizontal partitioning [2], which
partition the cache along cache ways and lines, respectively. Another option is
to use a scratchpad SRAM area and direct the scalar memory accesses to this
partition. Here, an appropriate partitioning option must be selected. Vertical
partitioning schemes are wasteful: the existing cache has to be divided into a
power of two, and our results indicate that the memory footprint of the scalars
in embedded media applications is small. Instead, we advocate the use of a
scratchpad SRAM area. Separate SRAMs are widely used in DSP’s: they are
typically used to hold frequently used data such as floating-point constants.
A scratchpad SRAM guarantees single cycle access time to scalars since there
are no cache misses. Moreover, the on-chip scratchpad SRAMs have small
sizes, making this scheme ideal for data with small memory footprint such
as the scalars in embedded media applications. This is also beneficial for a
software-directed approach, since as shown in [24] every hardware partition
can be logically partitioned and the scalar buffer area can be implemented
as a logical partition. We assume the SRAM area to be sufficient to hold
all the scalar data. No architectural modifications are necessary since many
embedded processors have a scratchpad buffer area, see Table 1.

Therefore, if the embedded processor is equipped with a scratchpad SRAM
area, the scalar memory accesses can be annotated by the compiler and
remapped to the scratchpad. If not, then the Instruction Set Architecture
(ISA) can be augmented by special load-store instructions which would chan-
nel the scalar data to a separate cache area. The modifications to the compiler
are minimal and consist of statically determining the application memory size
and mapping the scalar accesses to the special load-store instructions.

We ran the Mediabench benchmarks with the baseline cache settings; we
compared this with the same cache settings but with the scalar accesses being
redirected to the SRAM buffer area by the compiler. We stress that capacity
misses are not an issue here: Fritts et al. [14] have shown that data working
set sizes of the considered benchmarks are very small. The results for selected

12 Unsal, Wang, Koren, Krishna, Moritz

benchmarks are presented in Table 5. The improvement depends on the par-
ticular benchmark and ranges between 0.6 to 9.5 percent. This improvement
is more pronounced for the benchmarks which have a significant percentage
of scalars in their memory accesses. Our results also affirm that scratchpad
warmup costs are extremely small compared to the number of cache misses.

Table 5. The number of misses for the baseline and for a design with a scalar SRAM
buffer are shown in the first and third columns, respectively. The second column
shows the baseline miss rate. The percent drop in miss rate for remapping scalars
to scratchpad is given in the fourth column. The fifth column is the percentage of
scalar accesses to total memory accesses. The last column shows the scratchpad
buffer warmup costs, i.e., the cost associated with promoting scalars from main
memory to the scratchpad SRAM.

Baseline Miss (%) Partitioned Improvement(%) Scalars(%) Warmup

EPIC 1753939 13.6 1589065 9.5 32.0 15598
G721 1377675 2.0 1369395 0.6 4.5 9
GSM 239914 0.5 230549 3.9 2.3 19
JPEG 228644 9.3 224185 1.9 1.1 21
RASTA 216173 6.9 203373 5.9 16.0 59

We also replicated our experiments for a 2 Kbyte 2-way cache organization.
Table 6 shows the results. Note that the percentage improvements due to
remapping of scalars to scratchpad are similar to the direct mapped cache
results.

Table 6. The results for the 2-way associative cache. The first column shows the
baseline miss rate. The percentage reduction in miss rate due to remapping is shown
in the second column.

Miss Rate(%) Improvement (%)

EPIC 12.7 6.0
G721 1.2 0.1
GSM 0.5 5.5
JPEG 5.9 1.6
RASTA 5.3 9.2

4.5 Case Study: Scratchpad Energy Savings for Media Processors

Unless otherwise stated, all the results in this section are with a scratchpad of
size 1024 bytes, and the baseline cache is 64Kbyte 2-way associative. We ran
the benchmarks using the modified Wattch/Simplescalar and collected the

Analysis of Scalar Memory Accesses 13

data cache energy results. Figure 7 shows the percentage energy savings for
our 32 general-purpose register media processor model. We save 10.7% energy
on average by using our scheme.

Many media processors such as the ARM have a smaller number of reg-
isters, usually 16. Therefore, we have repeated our energy analysis for a 16-
register version of our media processor. For 16 registers we have significantly
more scalar memory accesses due to register pressure. The results are also

shown in Figure 7. Our technique saves in this case an average of 38.2% in
energy.

p 900
60 = 800
507 16-Register _, 32-Register £ 700
s £ 600
= 401 & 500
< £ 400
£ 307 I I 2 300
2200
”;20’ | =0 = 11 Z 100
2 10 I 0 o)
2 9 RN
ol P | e = 53 ESF S =
2 £
YrTEYF 2
= s‘b:b ~ E. = O = B 16 R. W/Minibuffer [16 R. No Minibuffer
= 032 R. No Minibuffer
Fig. 7. Scratchpad Energy Savings. Fig. 8. 16-register architecture with

scratchpad can be more energy ef-
ficient than 32-register architecture
without scratchpad.

In fact, we show that we can be just as energy-efficient with a 16-register
media processor with a scratchpad SRAM as a 32-register processor with no
scratchpad, see Figure 8. Actually, the overall energy savings are even greater
since we just concentrate on the data cache energy consumption: a 16-register
file consumes substantially less power than a 32-register file.

5 Conclusion and Future Work

We have performed an analysis of scalars in embedded systems. We established
the memory requirements of scalars in embedded applications and presented
a compiler algorithm to extract this information. We then discussed several
architectural issues pertaining to scalars in embedded systems.

This is ongoing work in line with our vision of creating memory systems
with logical partitions where accesses are being mapped based on their static
properties [24]. In particular, we a re integrating our technique with other

compiler/architectural techniques that handle diverse types of memory ac-
cesses.

14

Unsal, Wang, Koren, Krishna, Moritz

References

10.

11.

12.

13.

14.

15.

16.

. Appel AW, George L (2001) Optimal Spilling for CISC Machines with Few

Registers, In: Proceedings of the ACM Sigplan Conference on Programming
Language Design and Implementation, pp. 243253

Albonesi DH (1999) Selective Cache Ways: On-Demand Cache Resource Allo-
cation, In: Proceedings of the 32nd International Symposium on Microarchitec-
ture, MICRO32, pp. 248258

Belady LA (1966) A Study of Replacement Algorithms for a Virtual-Storage
Computer, IBM Systems Journal, 5(2):78-101

Benini L, Macii A, Poncino M (2000) A Recursive Algorithm for Low-Power
Memory Partitioning, In: Proceedings of the International Symposium on Low
Power Electronics and Design, ISLPED’00, Rapallo, Italy, pp. 78-83
Bhandarkar DP (1996) Alpha Implementations and Architecture, Complete Ref-
erence Guide, Digital Press, pp. 42-43

Bishop B, Kelliher T, Irwin N (1999) A Detailed Analysis of MediaBench, In:
Proceedings of the IEEE Workshop on Signal Processing Systems, Taipei, Tai-
wan

Burger D, Austin TD (1997) The Simplescalar Tool Set, Version 2.0, University
of Wisconsin-Madison Computer-Sciences Department Technical Report #1342
Brooks D, Tiwari V, Martonosi M (2000) Wattch: A Framework for
Architectural-Level Power Analysis and Optimizations, In: Proceedings of the
27th International Symposium on Computer Architecture, ISCA’00, Vancouver,
Canada, pp. 83-94

Burlin J (2000) Optimizing Stack Frame Layout for Embedded Systems, Masters
Thesis, Computing Science Department, Uppsala University, Uppsala, Sweden
Chiou D, Jain P, Rudolph L, Devadas S (2000) Application-Specific Memory
Management for Embedded Systems Using Software-Controlled Caches, In: Pro-
ceedings of the 37th Design Automation Conference, DAC’00, Los Angeles, CA,
pp- 416419

Cooper KD, Harvey TJ (1998) Compiler-Controlled Memory, In: Proceedings of
the Eighth International Conference on Architectural Support for Programming
Languages and Systems (ASPLOS-VIII), pp. 2-11

Delaluz V, Kandemir M, Vijaykrishnan N, Irwin MJ (2000) Energy-Oriented
Compiler Optimizations for Partitioned Memory Architectures, In: Proceedings
of the International Conference on Compilers, Architectures, and Synthesis for
Embedded Systems CASES00, San Jose, CA, pp. 138-147

Engblom J (1999) Why SpecInt95 Should Not Be Used to Benchmark Embedded
Systems Tools, In: Proceedings of the ACM Sigplan Workshop on Languages,
Compilers and Tools for Embedded Systems (LCTES’99), pp. 96-103

Fritts J, Wolf W, Liu B (1999) Understanding Multimedia Application Char-
acteristics for Designing Programmable Media Processors, In: Proceedings of
SPIE, Multimedia Hardware Architectures, San Jose, CA, pp.2-13

Huang M, Renau J, Torrellas J (2001) L1 Cache Decomposition for Energy
Efficient Processors, In: Proceedings of the International Symposium on Low-
Power Electronics and Design, ISLPED’01, Huntington Beach, CA, pp. 10-15
Kin J, Gupta M, Mangione-Smith WH (1997) The Filter Cache: An Energy
Efficient Memory Structure, In: Proceeedings of the 30th Annual Symposium
on Microarchitecture, MICRO30, pp. 184-193

17.

18.

19.

20.
21.

22.

23.

24.

25.

26.

27.

28.

29.

Analysis of Scalar Memory Accesses 15

Kulkarni C, Catthoor F, De Man H (2000) Advanced Data Layout Organization
for Multi-media Applications, In: Workshop on Parallel and Distributed Com-
puting in Image Processing, Video Processing, and Multimedia (PDIVM 2000),
Cancun, Mexico

Lee C, Potkonjak M, Mangione-Smith WH (1997) Mediabench: A Tool for Eval-
uating and Synthesizing Multimedia and Communications Systems, In: Pro-
ceedings of the 30th Annual International Symposium on Microarchitecture,
MICRO30, pp. 330-335

Lee HS, Tyson GS (2000) Region-Based Caching: An Energy Delay Efficient
Memory Architecture for Embedded Processors, In: Proceedings of PACM
(CASES’00), San Jose, CA, pp. 120-127
http://www.eecs.harvard.edu/hube/software/software.html

Memik G, Kandemir M, Haldar M, Choudhary A (1999) A Selective Hard-
ware/Compiler Approach for Improving Cache Locality, Northwestern Univer-
sity Technical Report CPDC-TR-9909-016

Milutinovich V, Tomasevic M, Markovic B, Tremblay M (1996) The Split Tem-
poral / Spatial Cache: Initial Performance Analysis, In: Proceedings of SCIzzL-5,
Santa Clara, CA, pp. 6369

Moritz CA, Frank M, Amarasinghe S (2000) FlexCache: A Framework for Com-
piler Generated Data Caching, In: Proceedings of the Second Workshop on In-
telligent Memory Systems, IRAMO00, Held in Conjunction with ASPLOS-IX,
Cambridge, MA

Moritz CA, Frank M, Amarasinghe S (2001) FlexCache: A Framework for Com-
piler Generated Data Caching, Lecture Notes in Computer Science, Springer-
Verlag

Mueller F (1995) Compiler Support for Software-Based Cache Partitioning, In:
Proceedings of the ACM SIGPLAN Workshop on Languages, Compilers and
Tools for Real-Time Systems, La Jolla, CA, pp. 125-133

O’Boyle M, Knijnenburg P (1996) Non-Singular Data Transformations: Defini-
tion, Validity, Applications, In: Proceedings of the 6th Workshop on Compilers
for Parallel Computers (CPC’96), Aachen, Germany, pp. 287-297

Panda PR, Dutt ND, Nicolau A (1997) Efficient Utilization of Scratch-Pad
Memory in Embedded Processor Applications, In: Proceedings of the European
Design and Test Conference, Paris, France, pp. 7-11

Ranganathan P, Adve S, Jouppi NP (2000) Reconfigurable Caches and Their
Application to Media Processing, In: Proceedings of the 27th International Sym-
posium on Computer Architecture (ISCA-27), pp. 214-224
http://suif.stanford.edu/

