Graphene

Low-Power Heterogeneous Graphene Nanoribbon-CMOS Multistate Volatile Memory Circuit

Graphene is an emerging nanomaterial believed to be a potential candidate for post-Si nanoelectronics, due to its exotic properties. Recently, a new graphene nanoribbon crossbar (xGNR) device was proposed which exhibits negative differential resistance (NDR). In this paper, a multi-state memory design is presented that can store multiple bits in a single cell enabled by this xGNR device, called Graphene Nanoribbon Tunneling Random Access Memory (GNTRAM). An approach to increase the number of bits per cell is explored alternative to physical scaling to overcome CMOS SRAM limitations.

AttachmentSize
PDF icon PDF5.01 MB

Heterogeneous Graphene-CMOS Ternary Content Addressable Memory

Leveraging nanotechnology for computing opens up exciting new avenues for breakthroughs. For example, graphene is an emerging nanoscale material and is believed to be a potential candidate for post-Si nanoelectronics due to high carrier mobility and extreme scalability. Recently, a new graphene nanoribbon crossbar (xGNR) device was proposed which exhibits negative differential resistance (NDR).

AttachmentSize
PDF icon PDF4.54 MB

Ternary Volatile Random Access Memory based on Heterogeneous Graphene-CMOS Fabric

Graphene is an emerging nano-material that has garnered immense research interest due to its exotic electrical properties. It is believed to be a potential candidate for post-Si nanoelectronics due to high carrier mobility and extreme scalability. Recently, a new graphene nanoribbon crossbar (xGNR) device was proposed which exhibits negative differential resistance (NDR). In this paper, we present an approach to realize multistate memories, enabled by these graphene crossbar devices.

AttachmentSize
PDF icon PDF1.01 MB

Hybrid Graphene Nanoribbon-CMOS Tunneling Volatile Memory Fabric

Graphene exhibits extraordinary electrical properties and is therefore often envisioned to be the candidate material for post-silicon era as Silicon technology approaches fundamental scaling limits. Various Graphene based electronic devices and interconnects have been proposed in the past. In this paper, we explore the possibility of a hybrid fabric between CMOS and Graphene by implementing a novel Graphene Nanoribbon crossbar (xGNR) based volatile Tunneling RAM (GNT RAM) and integrating it with the 3D CMOS stack and layout.

AttachmentSize
PDF icon PDF1.16 MB
Subscribe to RSS - Graphene