For sub-5nm technology nodes, gate-all-around (GAA) FETs are positioned to replace FinFETs to enable the continued miniaturization of ICs in the future. In this paper, we introduce SkyBridge-3D-CMOS 2.0, a 3D-IC technology featuring integration of stacked vertical GAAFETs and 3D interconnects. It aims to provide an integrated solution to critical technology aspects, especially when scaling to sub-5nm nodes. We address important aspects such as 3D fabric components, CAD tool flow, compact model for the GAAFETs and a scalable manufacturing process.
Artificial Intelligence is becoming ubiquitous in products and services that we use daily. Although the domain of AI has seen substantial improvements over recent years, its effectiveness is limited by the capabilities of current computing technology. Recently, there have been several architectural innovations for AI using emerging nanotechnology. These architectures implement mathematical computations of AI with circuits that utilize physical behavior of nanodevices purpose-built for such computations. This approach leads to a much greater efficiency vs.
Three-dimensional integrated circuits (3D-ICs) provide a feasible path for scaling CMOS technology in the foreseeable future. IMEC and IRDS roadmaps project that 3D integration is a key avenue for the IC industry beyond 2024. They project that some form of 3D-IC technology based on nanosheets/nanowires is likely to become mainstream soon.
Our European Union’s Horizon-2020 project aims to develop a complete synthesis and performance optimization
methodology for switching nano-crossbar arrays that leads to the design and construction of an emerging nanocomputer.
Within the project, we investigate different computing models based on either two-terminal switches, realized with field effect
Nano-crossbar arrays have emerged as area and power efficient structures with an aim of achieving high performance computing beyond the limits of current CMOS. Due to the stochastic nature of nano-fabrication, nano arrays show different properties both in structural and physical device levels compared to conventional
Nano-crossbar arrays have emerged to achieve high performance computing beyond the limits of current CMOS. They offer area and power efficiency in courtesy of their easyto-fabricate and dense physical
Continuous scaling of CMOS has been the major catalyst in miniaturization of integrated circuits (ICs) and crucial for global socio-economic progress. However, scaling to sub-20nm technologies is proving to be challenging as MOSFETs are reaching their fundamental limits and interconnection bottleneck is dominating IC operational power and performance. Migrating to 3-D, as a way to advance scaling, has eluded us due to inherent customization and manufacturing requirements in CMOS that are incompatible with 3-D organization.
This paper introduces a new fine-grained 3D IC fabric technology called NP-Dynamic Skybridge. Skybridge is a family of 3D IC technologies that provides fine-grained vertical integration. In comparison to the original 3D Skybridge, the NP-Dynamic approach enables a more comprehensive logic style for improved efficiency. It addresses device, circuit, connectivity and manufacturability requirements with an integrated 3D mindset. The NP-Dynamic 3D circuit style enables wide range of logic expressions, simple clocking scheme, and reduces buffer requirements.
At Sub-20nm technologies CMOS scaling faces severe challenges primarily due to fundamental device scaling limitations, interconnection overhead and complex manufacturing. Migration to 3-D has been long sought as a possible pathway to continue scaling; however, CMOS’s intrinsic requirements are not compatible for fine-grained 3-D integration. In [1], we proposed a truly fine-grained 3-D integrated circuit fabric called Skybridge that solves nanoscale challenges and achieves orders of magnitude benefits over CMOS.
Conventional CMOS technology is reaching fundamental scaling limits, and interconnection bottleneck is dominating IC power and performance. Migrating to 3-D integrated circuits, though promising, has eluded us due to inherent customization and manufacturing requirements in CMOS that are incompatible with 3-D organization. Skybridge, a fine-grained 3-D IC fabric technology was recently proposed towards this aim, which offers a paradigm shift in technology scaling and design.