For sub-5nm technology nodes, gate-all-around (GAA) FETs are positioned to replace FinFETs to enable the continued miniaturization of ICs in the future. In this paper, we introduce SkyBridge-3D-CMOS 2.0, a 3D-IC technology featuring integration of stacked vertical GAAFETs and 3D interconnects. It aims to provide an integrated solution to critical technology aspects, especially when scaling to sub-5nm nodes. We address important aspects such as 3D fabric components, CAD tool flow, compact model for the GAAFETs and a scalable manufacturing process.
Artificial Intelligence is becoming ubiquitous in products and services that we use daily. Although the domain of AI has seen substantial improvements over recent years, its effectiveness is limited by the capabilities of current computing technology. Recently, there have been several architectural innovations for AI using emerging nanotechnology. These architectures implement mathematical computations of AI with circuits that utilize physical behavior of nanodevices purpose-built for such computations. This approach leads to a much greater efficiency vs.
Three-dimensional integrated circuits (3D-ICs) provide a feasible path for scaling CMOS technology in the foreseeable future. IMEC and IRDS roadmaps project that 3D integration is a key avenue for the IC industry beyond 2024. They project that some form of 3D-IC technology based on nanosheets/nanowires is likely to become mainstream soon.
Our European Union’s Horizon-2020 project aims to develop a complete synthesis and performance optimization
methodology for switching nano-crossbar arrays that leads to the design and construction of an emerging nanocomputer.
Within the project, we investigate different computing models based on either two-terminal switches, realized with field effect
Nano-crossbar arrays have emerged as area and power efficient structures with an aim of achieving high performance computing beyond the limits of current CMOS. Due to the stochastic nature of nano-fabrication, nano arrays show different properties both in structural and physical device levels compared to conventional
Nano-crossbar arrays have emerged to achieve high performance computing beyond the limits of current CMOS. They offer area and power efficiency in courtesy of their easyto-fabricate and dense physical
Hardware implementations of artificial neural networks (ANNs) have become feasible due to the advent of persistent 2-terminal devices such as memristor, phase change memory, MTJs, etc. Hybrid memristor crossbar/CMOS systems have been studied extensively and demonstrated experimentally. In these circuits, memristors located at each cross point in a crossbar are, however, stacked on top of CMOS circuits using back end of line processing (BOEL), limiting scaling.
Non-volatile 3D FPGA research to date utilizes layer-by-layer stacking of 2D CMOS / RRAM circuits. On the other hand, vertically-composed 3D FPGA that integrates CMOS and RRAM circuits has eluded us, owing to the difficult requirement of highly customized regional doping and material insertion in 3D to build and route complementary p- and n-type transistors as well as resistive switches. In the layer-by-layer nonvolatile 3D FPGA, the connectivity between the monolithically stacked RRAMs and underlying CMOS circuits is likely to be limited and lead to large parasitic RCs.
Parallel and monolithic 3D integration directions realize 3D integrated circuits (ICs) by utilizing layer-by-layer implementations, with each functional layer being composed in 2D. In contrast, vertically-composed 3D CMOS has eluded us likely due to the seemingly insurmountable requirement of highly customized complex routing and regional 3D doping to form and connect CMOS pull-up and pull-down networks in 3D. In the current layer-by-layer directions, routing can be worse than 2D CMOS because of the limited pin access.
Thermal management is one of the critical challenges in 3D integrated circuits. Incorporating thermal optimizations during the circuit design stages requires a convenient automatic method of doing thermal characterization for feedback purposes. In this paper, we present a methodology, which supports thermal characterization by automatically extracting the steady-state thermal modeling resistance network from a post-placement physical design. The method follows a two-level hierarchical approach.